
Published as a conference paper at ICLR 2023

MOVING FORWARD BY MOVING BACKWARD: EMBED-
DING ACTION IMPACT OVER ACTION SEMANTICS

Kuo-Hao Zeng1, Luca Weihs2, Roozbeh Mottaghi1, Ali Farhadi1
1Paul G. Allen School of Computer Science & Engineering, University of Washington
2PRIOR @ Allen Institute for AI
prior.allenai.org/projects/action-adaptive-policy

ABSTRACT

A common assumption when training embodied agents is that the impact of taking
an action is stable; for instance, executing the “move ahead” action will always
move the agent forward by a fixed distance, perhaps with some small amount of
actuator-induced noise. This assumption is limiting; an agent may encounter set-
tings that dramatically alter the impact of actions: a move ahead action on a wet
floor may send the agent twice as far as it expects and using the same action with a
broken wheel might transform the expected translation into a rotation. Instead of
relying that the impact of an action stably reflects its pre-defined semantic mean-
ing, we propose to model the impact of actions on-the-fly using latent embed-
dings. By combining these latent action embeddings with a novel, transformer-
based, policy head, we design an Action Adaptive Policy (AAP). We evaluate
our AAP on two challenging visual navigation tasks in the AI2-THOR and Habi-
tat environments and show that our AAP is highly performant even when faced,
at inference-time with missing actions and, previously unseen, perturbed action
space. Moreover, we observe significant improvement in robustness against these
actions when evaluating in real-world scenarios.

1 INTRODUCTION

Humans show a remarkable capacity for planning when faced with substantially constrained or aug-
mented means by which they may interact with their environment. For instance, a human who
begins to walk on ice will readily shorten their stride to prevent slipping. Likewise, a human will
spare little mental effort in deciding to exert more force to lift their hand when it is weighed down
by groceries. Even in these mundane tasks, we see that the effect of a humans’ actions can have sig-
nificantly different outcomes depending on the setting: there is no predefined one-to-one mapping
between actions and their impact. The same is true for embodied agents where something as simple
as attempting to moving forward can result in radically different outcomes depending on the load the
agent carries, the presence of surface debris, and the maintenance level of the agent’s actuators (e.g.,
are any wheels broken?). Despite this, many existing tasks designed in the embodied AI commu-
nity (Jain et al., 2019; Shridhar et al., 2020; Chen et al., 2020; Ku et al., 2020; Hall et al., 2020; Wani
et al., 2020; Deitke et al., 2020; Batra et al., 2020a; Szot et al., 2021; Ehsani et al., 2021; Zeng et al.,
2021; Li et al., 2021; Weihs et al., 2021; Gan et al., 2021; 2022; Padmakumar et al., 2022) make the
simplifying assumption that, except for some minor actuator noise, the impact of taking a particular
discrete action is functionally the same across trials. We call this the action-stability assumption
(AS assumption). Artificial agents trained assuming action-stability are generally brittle, obtaining
significantly worse performance, when this assumption is violated at inference time (Chattopadhyay
et al., 2021); unlike humans, these agents cannot adapt their behavior without additional training.

In this work, we study how to design a reinforcement learning (RL) policy that allows an agent to
adapt to significant changes in the impact of its actions at inference time. Unlike work in training
robust policies via domain randomization, which generally leads to learning conservative strate-
gies (Kumar et al., 2021), we want our agent to fully exploit the actions it has available: philosoph-
ically, if a move ahead action now moves the agent twice as fast, our goal is not to have the agent
take smaller steps to compensate but, instead, to reach the goal in half the time. While prior works
have studied test time adaptation of RL agents (Nagabandi et al., 2018; Wortsman et al., 2019; Yu
et al., 2020; Kumar et al., 2021), the primary insight in this work is an action-centric approach which

1

prior.allenai.org/projects/action-adaptive-policy

Published as a conference paper at ICLR 2023

ot−1

ot

 = MoveAhead 0.2mat−1 = MoveAhead 0.1mat−1

Action-Im
pact

 Encoder

ot
ot−1

Expected Actual

at−1 = ai Policy N
etw

ork

O
rder-Invariant H

ead

at

 = Rotate 90at−1 ∘ = Rotate 30at−1 ∘

30∘
90∘

ot−1

ot

at−1 = aj Policy N
etw

ork

O
rder-Invariant H

ead

at

Defective Wheel

Carpet

Defective
Wheel Carpet

State
Encoder

AAP

Action-Im
pact

 Encoder
State

Encoder

AAP

Move

Rotate

thi

thj

Figure 1: An agent may encounter unexpected drifts during deployment due to changes in its internal
state (e.g., a defective wheel) or environment (e.g., hardwood floor v.s. carpet). Our proposed
Action Adaptive Policy (AAP) introduces an action-impact encoder which takes state-changes (e.g.,
ot → ot+1) caused by agent actions (e.g., at−1) as input and produces embeddings representing
these actions’ impact. Using these action embeddings, the AAP utilizes a Order-Invariant (OI) head
to choose the action whose impact will allow it to most readily achieve its goal.

requires the agent to generate action embeddings from observations on-the-fly (i.e., no pre-defined
association between actions and their effect) where these embeddings can then be used to inform
future action choices.

In our approach, summarized in Fig. 1, an agent begins each episode with a set of unlabelled actions
A = {a0, ..., an}. Only when the agent takes one of these unlabelled actions ai at time t, does
it observe, via its sensor readings, how that action changes the agent’s state and the environment.
Through the use of a recurrent action-impact encoder module, the agent then embeds the observa-
tions from just before (ot) and just after (ot+1) taking the action to produce an embedding of the
action ei,t. At a future time step t′, the agent may then use these action-impact embeddings to
choose which action it wishes to execute. In our initial experiments, we found that standard RL pol-
icy heads, which generally consist of linear function acting on the agent’s recurrent belief vector bt,
failed to use these action embeddings to their full potential. As we describe further in Sec. 4.3, we
conjecture that this is because matrix multiplications impose an explicit ordering on their inputs so
that any linear-based actor-critic head must treat each of the n! potential action orderings separately.
To this end, we introduce a novel, transformer-based, policy head which we call the Order-Invariant
(OI) head. As suggested by the name, this OI head is invariant to the order of its inputs and processes
the agent’s belief jointly with the action embeddings to allow the agent to choose the action whose
impact will allow it to most readily achieve its goal. We call this above architecture, which uses our
recurrent action-impact encoder module with our OI head, the Action Adaptive Policy (AAP).

To evaluate AAP, we train agents to complete two challenging visual navigation tasks within the
AI2-THOR environment (Kolve et al., 2017): Point Navigation (PointNav) (Deitke et al., 2020) and
Object Navigation (ObjectNav) (Deitke et al., 2020)1. For these tasks, we train models with moder-
ate amounts of simulated actuator noise and, during evaluation, test with a range of modest to severe
unseen action impacts. These include disabling actions, changing movement magnitudes, rotation
degrees, etc.; we call these action augmentations drifts. We find that, even when compared to sophis-
ticated baselines, including meta-learning (Wortsman et al., 2019), a model-based approach (Zeng
et al., 2021), and RMA (Kumar et al., 2021), our AAP approach handily outperforms competing
baselines and can even succeed when faced with extreme changes in the effect of actions. Further
analysis shows that our agent learns to execute desirable behavior at inference time; for instance, it
quickly avoids using disabled actions more than once during an episode despite not being exposed to
disabled actions during training. In addition, the experimental results in a real-world test scene from
RoboTHOR on the Object Navigation task demonstrate that our AAP performs better than baselines
against unseen drifts.

In summary, our contributions include: (1) an action-centric perspective towards test-time adapta-
tion, (2) an Action Adaptive Policy network consisting of an action-impact encoder module and
a novel order-invariant policy head, and (3) extensive experimentation showing that our proposed
approach outperforms existing adaptive methods.

1We also show results in a modified PettingZoo environment Terry et al. (2020) on Point Navigation and
Object Push in Sec. F and a modified Habitat Environment (Savva et al., 2019) on Point Navigation in Sec. G.

2

Published as a conference paper at ICLR 2023

2 RELATED WORK

Adaptation. There are various approaches in the literature that address adaptation to unknown
environments, action effects, or tasks.

Novel environments: These approaches explore the adaptation of embodied agents to unseen envi-
ronment dynamics (Yu et al., 2019; Wortsman et al., 2019; Zhou et al., 2019; Li et al., 2020a;b; Peng
et al., 2020; Song et al., 2020; Loquercio et al., 2021; Evans et al., 2022; O’Connell et al., 2022;
Kumar et al., 2021; 2022; Zhang et al., 2022; Agarwal et al., 2022). Various techniques such as
meta-learning (Wortsman et al., 2019), domain randomization (Yu et al., 2019), and image transla-
tion (Li et al., 2020a), have been used for adaptation. In contrast to these approaches, we address
changes in the actions of the agent as well. Moreover, unlike some of these approaches, e.g. Li et al.
(2020a), we do not assume access to the test environment.

Damaged body and perturbed action space: These methods focus on scenarios that the effect of
the actions changes during inference time as a result of damage, weakened motors, variable load,
or other factors. Yu et al. (2020) study adaptation to a weakened motor. Nagabandi et al. (2018)
explore adaptation to a missing leg. Yu et al. (2017) adapt to differences in mass and inertia of the
robot components. Our approach is closer to those of Yu et al. (2020) and Nagabandi et al. (2018)
that also consider changes in environment structures as well. Nonetheless, these works focus on
using meta-learning for locomotion tasks and optimize the model at the testing phase while we do
not optimize the policy at inference time. In our experiments, we find we outperform meta-learning
approaches without requiring, computationally taxing, meta-learning training.

Novel tasks: Several works focus on adapting to novel tasks from previously learned tasks or
skills (Finn et al., 2017; Gupta et al., 2018; Chitnis et al., 2019; Huang et al., 2019; Fang et al.,
2021). We differ from these methods as we focus on a single task across training and testing.

Out-of-distribution generalization. Generalization to out-of-distribution test data has been stud-
ied in other domains such as computer vision (Hendrycks & Dietterich, 2019; Peng et al., 2019),
NLP (McCoy et al., 2019; Zhang et al., 2019), and vision & language (Agrawal et al., 2018; Akula
et al., 2021). In this paper, our focus is on visual navigation, which in contrast to the mentioned
domains, is an interactive task and requires reasoning over a long sequence of images and actions.

System identification. Our paper shares similarities with the concept of System Identifica-
tion (Verma et al., 2004; Bongard et al., 2006; Seegmiller et al., 2013; Cully et al., 2015; Banerjee
et al., 2020; Lew et al., 2022). The major difference between our approach and the mentioned works
is that we use visual perception for adaptation.

3 PROBLEM FORMULATION

In this work, we aim to develop an agent which is robust to violations of the AS assumption. In
particular, we wish to design an agent that quickly adapts to settings where the outcomes of actions
at test time differ, perhaps significantly, from the outcomes observed at training time; for instance, a
rotation action might rotate an agent twice as far as it did during training or, in more extreme settings,
may be disabled entirely. We call these unexpected outcomes of actions, drifts. As discussed in
Sec. 1, the AS assumption is prevalent in existing embodied AI tasks and thus, to evaluate how well
existing models adapt to potential drifts, we must design our own evaluation protocol. To this end,
we focus on two visual navigation tasks, Point and Object Navigation (PointNav and ObjectNav),
as (1) visual navigation is a well-studied problem with many performant, drift-free or fixed-drift,
baselines, and (2) the parsimonious action space used in visual navigation (Move, Rotate, and
End) allows us to more fully explore the range of drifts possible for these tasks. We will now
describe the details of how we employ drifts to evaluate agents for these tasks.

In this work, we assume that a particular drift, perhaps caused by a defective sensor, broken parts,
motor malfunction, different amount of load, or stretched cable (Boots et al., 2014), may change
across episodes. We focus primarily on two categories of potential drift occurring in visual navi-
gation tasks: movement drift dm, which causes an unexpected translation when executing a Move
action, and rotation drift dr, which leads to an unexpected rotation when executing a Rotate action.
More specifically, we semantically define the movement and rotation actions as Move(d)= “move
forward by d meters” and Rotate(θ)= “rotate by θ degrees clockwise”. As we describe below,
the semantic meaning of these actions is designed to be true, up to small-to-moderate noise, during
training, but may change significantly during evaluation.

3

Published as a conference paper at ICLR 2023

Task Goal
Policy

Network
at

State Encoder

Action-Impact
Encoder

t

t - 1

Task Goal

Visual Observation (vt)

Visual Observation (vt-1)

at−1

Et

ht

Task Goal

rt
Visual Encoder

Embedder

ht

t
Visual Observation (vt)

State Encoder

(b) State Encoder(a) Model Overview

[

[cat
OI

Head

g

Figure 2: (a) Model Overview. Our model includes three modules: a state encoder, an action-impact
encoder, and a policy network with an order-invariant head (OI head). The blue and purple colors
denote learnable modules, and the yellow and light gray color represents hidden state from the state
encoder and action embedding from the action-impact encoder. (b) State Encoder is composed of a
visual encoder for visual encoding and a embedder for task goal. The light red and dark blue colors
indicate the learnable visual encoder and goal embedder, respectively.

For each training and evaluation episode, a movement drift dm and a rotation drift dr are sampled
and fixed throughout the episode. At every step, upon executing Move(d) the agent experiences
a d + dm + nd translation toward its forward-facing direction, where the nd represents the high-
frequency actuator noise from the RoboTHOR environment (Deitke et al., 2020). Similarly, when
the agent executes Rotate(θ), the agent rotates by θ+dr+nθ degrees where nθ again represents
high-frequency actuator noise. To evaluate robustness to the AS assumption, the strategies we use
to choose dm and dr differ between training and evaluation episodes.

During training. At the start of a training episode, we sample movement drift dm ∼ U(−p, p) and
rotation drift dr ∼ U(−q, q), where U(·, ·) denotes a uniform distribution and |p| ≪ um as well as
|q| ≪ 180◦. We set um = 0.25m, the standard movement magnitude in RoboTHOR.

During inference. At the start of an evaluation episode, we sample movement drift dm /∈ [−p, p]
and a rotation drift dr /∈ [−q, q].

Note that the drifts chosen during evaluation are disjoint from those seen during training.

4 ACTION ADAPTIVE POLICY

We first overview our proposed Action Adaptive Policy (AAP) in Sec. 4.1. We then present the
details of our action-impact encoder and Order-Invariant (OI) head in Sec. 4.2 and Sec. 4.3, respec-
tively. Finally, we describe our training strategy in Sec. 4.4.

4.1 MODEL OVERVIEW

The goal of our model is to adapt based on action impacts it experiences at test time. To accomplish
this, the Action Adaptive Policy (AAP) includes three modules: a state encoder, an action-impact
encoder, and a policy network with an order-invariant head (OI head), as illustrated in Fig. 2 (a).
The state encoder is responsible for encoding the agent’s current observation, including a visual
observation vt and the task goal, into a hidden state ht. The action-impact encoder processes the
current observation, previous observation, and previous action at−1 to produce a set of action em-
beddings Et, one embedding for each action in the action space A. More specifically, the job of
the action-impact encoder is to update the action embeddings via the previous action recurrently
using the encoded state-change feature (Sec. 4.2). Note that the embeddings ei,t ∈ Et are not given
information regarding which action was called to produce them; this is done precisely so that the
agent cannot memorize the semantic meaning of actions during training and, instead, must explicitly
model the impact of each action. Finally, the policy network with the OI head takes both the hidden
state ht and the set of action embeddings Et as inputs and predicts an action at.

State Encoder. Following Batra et al. (2020b); Weihs et al. (2020); Khandelwal et al. (2022), we
implement the state encoder with a visual encoder and an embedder, as shown in Fig 2 (b). Note
that popular baseline policy models used for embodied AI tasks frequently employ a policy network
directly after the state encoder to produce the agent’s action. In this work, we use an RGB image
as our visual observation vt. For the PointNav task goal, we follow Savva et al. (2019) and use
both GPS and compass sensors to provide the agent with the angle and distance to the goal position,
{∆ρt,∆ϕt}. For the ObjectNav task, we follow Deitke et al. (2020) and provide the agent with a
semantic token corresponding to the goal object category as the task goal. We use a CLIP-pretrained

4

Published as a conference paper at ICLR 2023

tt - 1

Task Goal

Visual Observation (vt)Visual Observation (vt-1)

at−1

Et

Visual Encoder

Embedder

Linear

[

[Feature Extract

select

RNN
mi

ft

Action-Order
Encoder

Is a

special action?

at−1

Yes

No

Encodecat

rt−1

rt

g

r*t

ei,t

Figure 3: Action-Impact Encoder. The input to the action-impact encoder are two consecutive
observations and the previous action. The encoder first extracts visual representations and a goal
representation via a ResNet-50 and an Embedder. Concatenated, these form a state-change feature
ft. The encoder then uses the previous action at−1=ai to retrieve the corresponding memory mi.
With mi, an RNN maps ft to an embedding. Finally, the encoder registers this embedding as the
action embedding ei,t if ai is not a “special” action (i.e., a non-actuator-based action). Otherwise,
the encoder registers an action embedding obtained from the Action-Order Encoder into ei,t.

ResNet-50 (He et al., 2016; Radford et al., 2021) as our visual encoder and a multi-layer perceptron
(MLP) as the embedder to obtain visual representation rt and goal representation g, respectively.
Finally, we concatenate them to construct the hidden state ht.

4.2 ACTION-IMPACT ENCODER

In this section, we introduce the action-impact encoder, see Fig. 3. The goal of this encoder is to
produce a set of action embeddings Et which summarize the impact of actions the agent has taken
in the episode so far. To adapt to unseen drifts during inference, these action embeddings should
not overfit to action semantics, instead they should encode the impact that actions actually have at
inference time. The action-impact encoder first extracts a state-change feature f from two consecu-
tive observations. It then utilizes a recurrent neural network (RNN) to update the action embedding
ei,t according to the previous action at−1=ai. As the action-impact encoder generates embeddings
for each action ai without using semantic information about the action, every embedding ei,t only
encodes the effect of its corresponding action. The decision to not use information about action
semantics has one notable side-effect: at the start of an episode, all action embeddings ei,0 will be
equal so that the agent will not know what any of its actions accomplish. It is only by using its ac-
tions, and encoding their impact, that the agent can learn how its actions influence the environment.

During the feature extraction stage, we employ the same visual encoder and embedder used by the
state encoder to process the visual observations, vt and vt−1, and the task goal. A linear layer is used
to project the two concatenated visual representations [rt, rt−1] ∈ Rl to r∗t ∈ R l

2 , where l = 1024
for PointNav and l = 3136 for ObjectNav. We then concatenate r∗t and the goal representation g, to
form the state-change feature ft = [r∗t , g], see the Feature Extract stage of Fig. 3.

After feature extraction, we apply an RNN, namely a GRU (Chung et al., 2014), to summarize state
changes through time, as illustrated in the Encode stage of Fig. 3. The use of a recurrent network
here allows the agent to refine its action embeddings using many observations through time and also
ignore misleading outliers (e.g., without a recurrent mechansim, an agent that takes a Move action
in front of a wall may erroneously believe that the move action does nothing). To update the action
embeddings recurrently, we utilize the previous action at−1 = ai to index into a matrix of memory
vectors to obtain the latest memory mi associated with ai. This memory vector is passed into the
RNN with ft recurrently. In this way, the state-change resulting from action ai only influences
the embedding ei. Note that we use the same RNN to summarize the state-changes for all actions.
Moreover, since at−1 is only used to select the memory, the RNN is agnostic to the action order and
focuses only on state-change modeling. Thus, the action embedding produced by the RNN does not
contain action semantics, but does carry state-changes information (i.e., action impact).

One technical caveat: the PointNav and ObjectNav tasks both have a special End action that denotes
that the agent is finished and immediately ends the episode. Unlike the other actions, it makes little
sense to apply action drift to End as it is completely independent from the agent’s actuators. We,
in fact, do want our agent to overfit to the semantics of End. To this end we employ an Action-
Order Encoder which assigns a unique action embedding to the End in lieu of the recurrent action
embedding. Note that these types of unique action embeddings are frequently used in traditional
models to encode action semantics. Finally, we register the recurrent embedding into the action

5

Published as a conference paper at ICLR 2023

(c) Order-Invariant Head(b) Linear Head

Order-Invariant Head

bt

…

e0,t ei,t bt

…

LayerNorm

Self-Atten

FFLayer

× n

vt

Linear
Head

at ∈ R|A|

Linear
Head

vt

bt
Et ht

RNN

flatten

btEt

shortcut

cat

Order-Invariant Head

vt

(a) Policy Network

cat

at ∈ R|A| at ∈ R|A|

… e0,t ei,t…

FFLayer

o0,t on+1,t…

Figure 4: (a) Policy Network with Order-Invariant Head first flattens the input and uses an RNN
to produce a belief b. An Order-Invariant head further processes the action embeddings E and belief
b to predict action probability and value. (b) Linear actor-critic takes the belief b from RNN to
predict action probability and value. (c) Order-Invariant Head is invariant to the order of its inputs
so the policy predicts the action probability and value based on state-changes (i.e., action impact)
instead of action semantics (i.e., a consistent action order).

embedding ei,t via the previous action at−1 = ai, if this action ai is not the End (Encode panel of
Fig. 3); otherwise, we register the action embedding ei,t as the output of the Action-Order Encoder.

4.3 POLICY NETWORK WITH AN ORDER-INVARIANT HEAD

Standard policy networks in embodied AI use an RNN to summarize state representations ht through
time and an actor-critic head to produce the agent’s policy (a probability distribution over actions)
and an estimate of the current state’s value. Frequently, this actor-critic head is a simple linear
function that maps the agent’s current beliefs bt (e.g., the output of the RNN) to generate the above
outputs, see Fig. 4 (b). As the matrix multiplications used by this linear function require that their
inputs and outputs be explicitly ordered, this imposes an explicit, consistent, ordering on the agent’s
actions. More specifically, let the weight matrix in the linear mapping be W = [w0| . . . |wn]

T , then
wi are the unique set of weights corresponding to the ith action ai. Because the wT

i is specifically
learned for the ith action during the training stage, it encodes the semantics of action ai and thereby
prevents the policy from generalizing to unexpected drifts applied to ai. For example, if the action
ai is Rotate(30◦), and the policy is learned with training drifts in the range between [−15◦, 15◦],
then policy will fail catastrophically when experiencing an unexpected drift 20◦ because the policy
has overfit to the semantics that the ai should only be associated with 30◦ ± 15◦ rotation.

To address this issue, we propose to equip our policy network with a transformer-based Order-
Invariant (OI) actor-critic head, as shown in Fig. 4 (a). The OI head, illustrated in Fig. 4 (c), takes
both the belief bt and the action embeddings e0,t, . . . , en,t as input to produce o0,t, . . . , on,t, on+1,t,
where the on+1,t is produced by bt. A Feed-Forward Layer then maps the o0,t, . . . , on,t to action
logits and the on+1,t to an estimate of the current state’s value. Finally, we apply Softmax on the ac-
tion logits to generate action probabilities. We implement the OI head using a Transformer (Vaswani
et al., 2017) encoder without a positional encoding. By design, the extensive weight sharing in a
transformer (e.g., the query, key, and value embedding, as well as the Feed-Forward Layer are shared
across all the input tokens) means that there are no unique weights assigned to any particular action.

In conclusion, as (1) the transformer uses the same weights for each input embedding, (2) the re-
moval of positional encoding prevents the model from focusing on action semantics, and (3) the set
of action embeddings E is used to represent the impact of actions, the proposed AAP can choose
the action most useful for its goal despite unexpected drifts. In Sec. 5.1 we show the importance of
weight sharing and the action embeddings E by comparing our overall model with two ablations:
(i) AAP but with a linear actor-critic head and, (ii) AAP but with no Action-Impact Encoder.

4.4 TRAINING STRATEGY

To train our agent, we use DD-PPO (Wijmans et al., 2020) to perform policy optimization via rein-
forcement learning. To endow the action embeddings E with an ability to describe the state-change
between two consecutive observations, we utilize an auxiliary model-based forward prediction loss
to optimize the action-impact encoder. In particular, we apply a Feed-Forward Layer (a shared
MLP applied to each input independently), which operates on each embedding {e0, . . . , en} in-
dependently to predict the agent state-change from the current step t to the next step t + 1. As

6

Published as a conference paper at ICLR 2023

long as the RNN in the action-impact encoder has been exposed to state-changes resulting from an
action, the action-impact encoder can learn to predict the precise agent state change ∆st+1. Our
forward prediction loss is optimized jointly alongside DD-PPO using the same collection of on-
policy trajectories collected in standard DD-PPO training. Namely, if M consecutive agent steps
are collected during an on-policy rollout, then we apply a simple MSE Loss w.r.t the ground-truth
agent state-changes ∆s∗ = {∆s∗t−M ,∆s∗t−M+1, ...,∆s∗t }: Lforward = MSE(∆s,∆s∗), where
∆s = {∆st−M ,∆st−M+1, ...,∆st} are the predicted agent state-changes. Therefore, our over-
all learning objective is L = LPPO + αLforward, where α controls the relative importance of Lforward.
We set α = 1.0 in this work. For model optimization details, see Fig. 8 in the Sec. B.

5 EXPERIMENTS

In our experiments, we aim to answer the following questions: (1) How does the proposed AAP
perform when exposed to expected or modest drifts and how does this performance compare to
when it is exposed to unseen or severe drifts? (2) Can the AAP handle extreme cases where some
actions are disabled and have no effect on the environment? (3) When faced with multiple disabled
actions, can the AAP recognize these actions and avoid using them? (4) Is it important to use the
action-impact encoder and OI head jointly or can using one of these modules bring most of the
benefit? (5) Qualitatively, how does the AAP adapt to, previously unseen, action drifts?

Implementation details. We consider two visual navigation tasks, PointNav and ObjectNav, using
the RoboTHOR framework (Deitke et al., 2020). RoboTHOR contains 75 scenes replicating coun-
terparts in the real-world and allows for rich robotic physical simulation (e.g., actuator noise and
collisions). The goals of the two tasks are for the agent to navigate to a given target; in Point-
Nav this target is a GPS coordinate and in ObjectNav this target is an object category. In the
environment, we consider 16 actions in action space A = {Move(d), Rotate(θ), End},
where d ∈ {0.05, 0.15, 0.25} in meters and θ ∈ {0◦,±30◦,±60◦,±90◦,±120◦,±150◦, 180◦}.
We set p = 0.05m so that we sample movement drifts dm ∼ U(−0.05, 0.05) and q = 15◦ so
that we sample rotation drifts dr ∼ U(−15◦, 15◦) during training. We then evaluate using drifts
d∗m ∈ {±0.05,±0.1, 0.2, 0.4} and d∗r ∈ {±15◦,±30◦,±45◦,±90◦,±135◦, 180◦}. Note that only
dm = ±0.05 and dr = ±15◦ are drifts seen during training. The agent is considered to have
successfully completed an episode if it takes the End action, which always immediately ends an
episode, and its location is within in 0.2 meters of the target for PointNav or if the target object is
visible and within 1.0 meters for ObjectNav. Otherwise, the episode is considered a failure. We
use the AllenAct (Weihs et al., 2020) framework to conduct all the experiments. During training,
we employ the default reward shaping defined in AllenAct: Rpenalty + Rsuccess + Rdistance, where
Rpenalty = −0.01, Rsuccess = 10, and Rdistance denotes the change of distances from target between
two consecutive steps. See Sec. B for training and model details.

Baselines. Each baseline method uses the same visual encoder, goal embedder, RNN and linear
actor-critic in the policy network unless stated otherwise. We consider following baselines.
- EmbCLIP (Khandelwal et al., 2022) is a baseline model implemented in AllenAct that uses a
CLIP-pretrained ResNet-50 visual backbone. It simply uses a state-encoder to obtain hidden state
ht, applies a RNN to obtain recurrent belief bt over ht, and uses a linear actor-critic head to predict
an action at via bt. This architecture is used by the current SoTA agent for RoboTHOR ObjectNav
without action drift (Deitke et al., 2022).
- Meta-RL (Wortsman et al., 2019) is an RL approach based on Meta-Learning (Finn et al., 2017).
However, since we do not provide reward signal during inference, we cannot simply apply an ar-
bitrary meta-RL method developed in any prior work. Thus, we follow (Wortsman et al., 2019) to
employ the same Lforward in our AAP as the meta-objective during training and inference. We add
an MLP after the belief bt in the EmbCLIP baseline policy to predict the next agent state-change
∆st+1 to enable the meta-update phase during both training and inference stages.
- RMA (Kumar et al., 2021) is a method assessing environmental properties using collected experi-
ences. Although they focus on locomotion tasks, we adapt their idea into our studied problem. At
the first stage in RMA training, we input both the movement drift dm and rotation drift dr into the
model to learn a latent code c ∈ R8 of the environment. The policy network then takes c as an
additional representation to make a prediction. During the second training stage, we follow (Kumar
et al., 2021) to learn a 1-D Conv-Net that processes the past 16 agent states to predict c. In this stage,
all modules are frozen, except for the 1-D Conv-Net.
- Model-Based (Zeng et al., 2021) is a model-based forward prediction approach for the agent state-
changes ∆s. However, they focus on predicting the future agent state-changes associated with differ-

7

Published as a conference paper at ICLR 2023

d*m = ± 0.05m d*m = ± 0.1m d*m = 0.2m

d*r d*r d*r

Su
cc

es
s R

at
e

(S
R

)
Su

cc
es

s R
at

e
(S

R
)

Po
in

t
N

av
ig

at
io

n
O

bj
ec

t
N

av
ig

at
io

n

— AAP (Ours) — EmbCLIP — Meta-RL — RMA — Model-Based

0.0
0.2
0.4
0.6
0.8
1.0

20 100 180 20 100 180 20 100 180

20 100 180 20 100 180 20 100 180
0.0
0.1
0.2
0.3
0.4
0.5

d*m = 0.4m

20 100 180

20 100 180
d*r

Figure 5: AAP results. Top: PointNav evaluation. Bottom: ObjectNav evaluation. We com-
pare the proposed AAP with baselines, including EmbCLIP, Meta-RL, RMA, and Model-Based.
We measure the SR over different drifts, including d∗m = {±0.05,±0.1, 0.2, 0.4} and d∗r =
{±15◦,±30◦,±45◦,±90◦,±135◦, 180◦}. See Sec. A for an example of how our AAP learns to
handle unseen drifts by using the Action-Impact Encoder and OI head.

Top-Down View (Progress)

Po
in
tN
av

Rotate()120∘ Rotate()30∘ Rotate()150∘ Move()0.25

, , Disabled Rotate()dm = 0.2 dr = 0∘ θleft = {−30∘, − 60∘, − 90∘, − 120∘, − 150∘}

O
bj
ec
tN
av

Rotate()−60∘ Move()0.25

, , Disabled Rotate()dm = 0.2 dr = − 30∘ θright = {30∘,60∘,90∘,120∘,150∘}

Rotate()−30∘ Rotate()−30∘

t

t

Top-Down View (Progress)

Figure 6: Qualitative Results. Examples of PointNav (top) and ObjectNav (bottom), where dm =
0.2 and dr = 0◦ and dr = −30◦. Rotate left and rotate right actions are disabled, respectively. The
agent adapts by rotating in the other direction to compensate for the disabled actions.

ent actions, and further embed them into action embeddings. Moreover, they use a linear actor-critic
to make a prediction which does not fully utilize the advantage of our action-centric approach.
5.1 RESULTS

Evaluation Metrics. We evaluate all models by their Success Rate (SR); we also report the popular
SPL (Anderson et al., 2018), Episode Length, Reward, Distance to Target, and soft-SPL (Datta
et al., 2021) metric in Sec. D. SR is the proportion of successful episodes over the validation set.
In addition, we report the Avoid Disabled Actions Rate (ADR) and Disabled Action Usage (DAU)
metrics in the Disabled Actions experiments. The ADR equals the proportion of episodes in which
the agent uses no disabled action more than once, and the DAU computes the total number of times
disabled actions are used averaged across all episodes.

Different Drifts. The quantitative results for PointNav and ObjectNav are shown in Fig. 5. As
shown, the SR of competing baselines decreases remarkably as the movement drifts dm and rotation
drifts dr increase from modest (dm= ± 0.05, dr= ± 15◦) to more severe (dm=0.4, dr=180◦).
Alternatively, our AAP performs consistently across all the drift changes and outperforms baselines
significantly. Note that the baselines perform well (SR≈100% for PointNav and SR≈46% for Ob-
jectNav) with seen drifts (dm=0.05, dr=15◦), but our AAP achieves consistent SR across all drifts
because the action embeddings effectively capture the state-changes associated with actions so the
OI head can thereby recognize that, for instance, action ai = Rotate(30◦) becomes another action
aj = Rotate(120◦) with rotation drift dr = 90◦ during inference. As the magnitude of movement
actions are not bounded (unlike rotation actions Rotate(θ), where θ ∈ [−180◦, 180◦]), AAP’s
performance begins to decrease for very large movement drifts (e.g., dm = 0.4).

8

Published as a conference paper at ICLR 2023

Table 1: Disabled Actions results in PointNav (a,c) and ObjectNav (b,d). ↑ and ↓ indicate if larger or smaller
numbers are preferred. The experiments are repeated three times.

(a) PointNav Success Rate (SR)
SR↑ disable θleft disable θright

AAP (Ours) 96.0±1.1 98.0±0.9
EmbCLIP 11.8±1.4 13.0±1.3
Meta-RL 29.2±4.8 28.6±3.4

RMA 12.5±1.6 12.8±4.4
Model-Based 21.5±10.7 14.0±2.8

(b) ObjectNav Success Rate (SR)
SR↑ disable θleft disable θright

AAP (Ours) 31.2±3.3 38.8±3.0
EmbCLIP 12.8±3.2 23.8±1.7
Meta-RL 18.7±1.7 26.2±1.9

RMA 9.3±6.8 24.2±2.1
Model-Based 19.2±1.2 9.9±1.2

(c) Analysis of disabled actions in PointNav
ADR↑ / DAU↓ disable θleft disable θright

AAP (Ours) 12.5 / 27.8 18.4 / 15.7
EmbCLIP 0.3 / 93.9 1.0 / 93.3
Meta-RL 0.7 / 83.1 0.6 / 85.2

RMA 0.4 / 94.4 0.5 / 95.2
Model-Based 0.7 / 89.4 0.6 / 96.1

(d) Analysis of disabled actions in ObjectNav
ADR↑ / DAU↓ disable θleft disable θright

AAP (Ours) 3.2 / 41.4 5.3 / 28.5
EmbCLIP 0.6 / 90.5 2.9 / 71.2
Meta-RL 2.0 / 80.1 2.2 / 84.5

RMA 0.6 / 95.9 2.6 / 73.3
Model-Based 2.5 / 81.4 1.5 / 89.8

Disabled Actions. We consider two experimental settings to evaluate how models perform when
some actions are disabled (e.g., due to to a malfunctioning motors or damaged wheel). In the first
setting we disable the 5 rotation angles θright ∈ {30◦, 60◦, 90◦, 120◦, 150◦} so that the agent cannot
rotate clockwise and, in the second setting, we disable θleft ∈ {−30◦,−60◦,−90◦,−120◦,−150◦}
so that the agent can only rotate clockwise. We otherwise set dm = 0.2m and dr = 0◦ in this
experiment. The SR for PointNav and ObjectNav are shown in Tab. 1a and Tab. 1b. As shown,
there is a huge difference between the baselines and AAP; for instance, for the PointNav task, AAP
achieves near 100% SR while the best competing baseline (Meta-RL) achieves <30%. In addition,
AAP outperforms the baselines by at least 12.5% on average in ObjectNav. We further report the
ADR and DAU metrics for this task in Tab. 1c and Tab. 1d; from these tables we see that AAP is
very effective at recognizing what actions are disabled through the proposed action embeddings E,
see ADR, and efficiently avoids using such actions, see DAU. Fig. 6 shows an example with θleft on
PointNav and another one with θright on ObjectNav. See more examples in Sec. E and Fig. 14.

— AAP (Ours) — Action-Semantics — LAC

d*m = ± 0.1m

d*r d*r

Su
cc

es
s R

at
e

(S
R

)

0.0
0.2
0.4
0.6
0.8
1.0

20 100 180 20 100 180

d*m = 0.4m

Figure 7: Ablation studies. We conducted the
ablation studies on PointNav by comparing AAP
to: (1) “LAC”, a variant of AAP that uses a linear
actor-critic head instead of our OI head and (2)
“Action-Semantics”, a variant of AAP that uses
the OI head without the Action-Impact Encoder.

Ablation Studies. We investigated which module in
the AAP contributes the most to the performance, or
if they are all necessary and complementary to one
another. We conducted the ablation studies on Point-
Nav by comparing our proposed AAP to: (1) “LAC”,
a variant of AAP that uses a linear actor-critic head
instead of our OI head and (2) “Action-Semantics”,
a variant of AAP that uses the OI head without the
Action-Impact Encoder (so there are unique learn-
able embeddings for each unique action). The results
are shown in Fig. 7. Although Action-Semantics
achieves similar SR to AAP when dm = ±0.1m and
dr ∈ {±15◦,±30◦}, its performance starts decreas-
ing as the drifts become more dramatic. In contrast,
the poor SR of LAC confirms our OI head is far better
leverage the predicted action embeddings than a linear actor-critic.

Table 2: Real-World Experiments
results in RoboTHOR on ObjectNav.

Model SR↑
AAP (Ours) 65%

EmbCLIP trained w. drifts 30%
EmbCLIP 25%

Real-World Experiments. We train our AAP and EmbCLIP
on ProcTHOR 10k (Deitke et al., 2022) for ObjectNav with
training drifts dm and dr, then evaluate in a real-world scene
from RoboTHOR (Deitke et al., 2020). In an exploratory ex-
periment, the goal is to find Apple and Chair from 2 dif-
ferent starting locations (20 episodes) at inference. We inject
the drifts (d∗m ∈ {−0.05m, 0m, 0.1m} and d∗r ∈ {0◦,±60◦}) by adding the drifts to the low-level
commands used by the robot. Tab. 2 shows AAP performs more robustly against these unseen drifts.
6 CONCLUSION

We propose Action Adaptive Policy (AAP) to adapt to unseen effects of actions during inference.
Our central insight is to embed the impact of the actions on-the-fly rather than relying on their
training-time semantics. Our experiments show that AAP is quite effective at adapting to unseen
action outcomes at test time, outperforming a set of strong baselines by a significant margin, and
can even maintain its performance when some of the actions are completely disabled.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We thank members of the RAIVN lab at the University of Washington and the PRIOR team at the
Allen Institute for AI for their valuable feedback on early versions of this project. This work is in
part supported by NSF IIS 1652052, IIS 17303166, DARPA N66001-19-2-4031, DARPA W911NF-
15-1-0543, J.P. Morgan PhD Fellowship, and gifts from Allen Institute for AI.

REFERENCES

Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged locomotion in chal-
lenging terrains using egocentric vision. In CoRL, 2022. 3

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don’t just assume; look
and answer: Overcoming priors for visual question answering. In CVPR, 2018. 3

Arjun Reddy Akula, Soravit Changpinyo, Boqing Gong, Piyush Kumar Sharma, Song-Chun Zhu,
and Radu Soricut. Crossvqa: Scalably generating benchmarks for systematically testing vqa
generalization. In EMNLP, 2021. 3

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta,
Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, and Amir R.
Zamir. On evaluation of embodied navigation agents. arXiv, 2018. 8, 16

Somrita Banerjee, James Harrison, P Michael Furlong, and Marco Pavone. Adaptive meta-learning
for identification of rover-terrain dynamics. arXiv, 2020. 3

Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia Deng, Vladlen Koltun, Sergey
Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mottaghi, et al. Rearrangement: A challenge for
embodied ai. arXiv, 2020a. 1

Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi,
Manolis Savva, A. Toshev, and Erik Wijmans. Objectnav revisited: On evaluation of embodied
agents navigating to objects. arXiv, 2020b. 4

Josh C. Bongard, Victor Zykov, and Hod Lipson. Resilient machines through continuous self-
modeling. Science, 2006. 3

Byron Boots, Arunkumar Byravan, and Dieter Fox. Learning predictive models of a depth camera
& manipulator from raw execution traces. In ICRA, 2014. 3

Prithvijit Chattopadhyay, Judy Hoffman, Roozbeh Mottaghi, and Aniruddha Kembhavi. Robustnav:
Towards benchmarking robustness in embodied navigation. In ICCV, 2021. 1

Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vicenc Amengual Gari, Ziad Al-Halah,
Vamsi Krishna Ithapu, Philip Robinson, and Kristen Grauman. Soundspaces: Audio-visual navi-
gation in 3d environments. In ECCV, 2020. 1

Rohan Chitnis, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Learning quickly to plan quickly
using modular meta-learning. In ICRA, 2019. 3

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. In NeurIPS Workshop on Deep Learning,
2014. 5

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 2015. 3

Samyak Datta, Oleksandr Maksymets, Judy Hoffman, Stefan Lee, Dhruv Batra, and Devi Parikh.
Integrating egocentric localization for more realistic point-goal navigation agents. In CoRL, 2021.
8, 17

Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric Kolve, Roozbeh Mottaghi,
Jordi Salvador, Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, et al. Robothor: An open
simulation-to-real embodied ai platform. In CVPR, 2020. 1, 2, 4, 7, 9

10

Published as a conference paper at ICLR 2023

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Jordi Salvador, Kiana Ehsani, Winson
Han, Eric Kolve, Ali Farhadi, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-
scale embodied ai using procedural generation. arXiv, 2022. 7, 9

Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha
Kembhavi, and Roozbeh Mottaghi. Manipulathor: A framework for visual object manipulation.
In CVPR, 2021. 1

Ben Evans, Abitha Thankaraj, and Lerrel Pinto. Context is everything: Implicit identification for
dynamics adaptation. In ICRA, 2022. 3

Kuan Fang, Yuke Zhu, Silvio Savarese, and Li Fei-Fei. Learning generalizable skills via automated
generation of diverse tasks. In RSS, 2021. 3

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017. 3, 7

Chuang Gan, Jeremy Schwartz, Seth Alter, Martin Schrimpf, James Traer, Julian De Freitas, Jonas
Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, et al. Threedworld: A platform for
interactive multi-modal physical simulation. In NeurIPS Dataset, 2021. 1

Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter, Abhishek Bhandwaldar, Dan Gutfreund,
Daniel LK Yamins, James J DiCarlo, Josh McDermott, Antonio Torralba, et al. The threedworld
transport challenge: A visually guided task-and-motion planning benchmark towards physically
realistic embodied ai. In ICRA, 2022. 1

Abhishek Gupta, Russell Mendonca, Yuxuan Liu, P. Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In NeurIPS, 2018. 3

David Hall, Ben Talbot, Suman Raj Bista, Haoyang Zhang, Rohan Smith, Feras Dayoub, and
Niko Sünderhauf. The robotic vision scene understanding challenge. In arXiv preprint
arXiv:2009.05246, 2020. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016. 5

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In ICLR, 2019. 3

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese, and
Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video demon-
stration. In CVPR, 2019. 3

Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik, Ali Farhadi, Alexan-
der G Schwing, and Aniruddha Kembhavi. Two body problem: Collaborative visual task comple-
tion. In CVPR, 2019. 1

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Simple but effec-
tive: Clip embeddings for embodied ai. In CVPR, pp. 14829–14838, 2022. 4, 7, 14, 15

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d environment for
visual ai. In arxiv, 2017. 2

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
Multilingual vision-and-language navigation with dense spatiotemporal grounding. In EMNLP,
2020. 1

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. In RSS, 2021. 1, 2, 3, 7, 15

Ashish Kumar, Zhongyu Li, Jun Zeng, Deepak Pathak, Koushil Sreenath, and Jitendra Malik. Adapt-
ing rapid motor adaptation for bipedal robots. In IROS, 2022. 3

11

Published as a conference paper at ICLR 2023

Thomas Lew, Apoorva Sharma, James Harrison, Andrew Bylard, and Marco Pavone. Safe active
dynamics learning and control: A sequential exploration–exploitation framework. IEEE Transac-
tions on Robotics, 2022. 3

Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, Michael Lingelbach, Sanjana Srivastava, Bokui Shen,
Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al. igibson 2.0: Object-centric simula-
tion for robot learning of everyday household tasks. In CoRL, 2021. 1

Shangda Li, Devendra Singh Chaplot, Yao-Hung Hubert Tsai, Yue Wu, Louis-Philippe Morency,
and Ruslan Salakhutdinov. Unsupervised domain adaptation for visual navigation. arXiv, 2020a.
3

Shunkai Li, Xin Wang, Yingdian Cao, Fei Xue, Zike Yan, and Hongbin Zha. Self-supervised deep
visual odometry with online adaptation. In CVPR, 2020b. 3

Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide
Scaramuzza. Learning high-speed flight in the wild. In Science Robotics, 2021. 3

R. Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In ACL, 2019. 3

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, P. Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In ICLR, 2018. 1, 3, 15, 16

Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar,
Yisong Yue, and Soon-Jo Chung. Neural-fly enables rapid learning for agile flight in strong
winds. In Science Robotics, 2022. 3

Aishwarya Padmakumar, Jesse Thomason, Ayush Shrivastava, Patrick Lange, Anjali Narayan-Chen,
Spandana Gella, Robinson Piramuthu, Gokhan Tur, and Dilek Hakkani-Tur. Teach: Task-driven
embodied agents that chat. In AAAI, 2022. 1

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In ICCV, 2019. 3

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Edward Lee, Jie Tan, and Sergey
Levine. Learning agile robotic locomotion skills by imitating animals. In RSS, 2020. 3

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021. 5

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
platform for embodied ai research. In ICCV, 2019. 2, 4, 21

Neal Seegmiller, Forrest Rogers-Marcovitz, Greg Miller, and Alonzo Kelly. Vehicle model iden-
tification by integrated prediction error minimization. The Intl. J. of Robotics Research, 2013.
3

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
for everyday tasks. In CVPR, 2020. 1

Xingyou Song, Yuxiang Yang, Krzysztof Choromanski, Ken Caluwaerts, Wenbo Gao, Chelsea Finn,
and Jie Tan. Rapidly adaptable legged robots via evolutionary meta-learning. In IROS, 2020. 3

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. In NeurIPS, 2021. 1

12

Published as a conference paper at ICLR 2023

J. K Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sulivan, Luis
Santos, Rodrigo Perez, Caroline Horsch, Clemens Dieffendahl, Niall L Williams, Yashas Lokesh,
Ryan Sullivan, and Praveen Ravi. Pettingzoo: Gym for multi-agent reinforcement learning. In
arXiv, 2020. 2, 19

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. 6

Vandi Verma, Geoffrey J. Gordon, Reid G. Simmons, and Sebastian Thrun. Real-time fault diagnosis
[robot fault diagnosis]. IEEE Robotics & Automation Magazine, 2004. 3

Saim Wani, Shivansh Patel, Unnat Jain, Angel X. Chang, and Manolis Savva. Multi-on: Bench-
marking semantic map memory using multi-object navigation. In NeurIPS, 2020. 1

Luca Weihs, Jordi Salvador, Klemen Kotar, Unnat Jain, Kuo-Hao Zeng, Roozbeh Mottaghi, and
Aniruddha Kembhavi. Allenact: A framework for embodied ai research. In arXiv, 2020. 4, 7, 15

Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and Roozbeh Mottaghi. Visual room rearrange-
ment. In CVPR, 2021. 1

Erik Wijmans, Abhishek Kadian, Ari S. Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames. In
ICLR, 2020. 6

Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi.
Learning to learn how to learn: Self-adaptive visual navigation using meta-learning. In CVPR,
2019. 1, 2, 3, 7, 15

Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Micael Edmond Tchapmi, Alexander
Toshev, Roberto Martı́n-Martı́n, and Silvio Savarese. Interactive gibson benchmark: A benchmark
for interactive navigation in cluttered environments. In ICRA, 2020. 21

Wenhao Yu, C. Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal policy
with online system identification. In RSS, 2017. 3

Wenhao Yu, C. Karen Liu, and Greg Turk. Policy transfer with strategy optimization. In ICLR,
2019. 3

Wenhao Yu, Jie Tan, Yunfei Bai, Erwin Coumans, and Sehoon Ha. Learning fast adaptation with
meta strategy optimization. IEEE Robotics and Automation Letters, 2020. 1, 3

Kuo-Hao Zeng, Luca Weihs, Ali Farhadi, and Roozbeh Mottaghi. Pushing it out of the way: Inter-
active visual navigation. In CVPR, 2021. 1, 2, 7, 15

Dingqi Zhang, Antonio Loquercio, Xiangyu Wu, Ashish Kumar, Jitendra Malik, and Mark W
Mueller. A zero-shot adaptive quadcopter controller. In arXiv, 2022. 3

Yuan Zhang, Jason Baldridge, and Luheng He. Paws: Paraphrase adversaries from word scrambling.
In NAACL, 2019. 3

Wenxuan Zhou, Lerrel Pinto, and Abhinav Kumar Gupta. Environment probing interaction policies.
In ICLR, 2019. 3

13

Published as a conference paper at ICLR 2023

SUPPLEMENTARY MATERIAL

A GENERALIZATION OF AAP TO UNSEEN DRIFTS

We provide an example here to illustrate how our AAP generalizes to unseen drifts during the testing
stage. In the training stage, the rotation actions cover all degrees θ ∈ {−150◦ ± 15◦,−120◦ ±
15◦, ..., 150◦±15◦, 180◦±15◦} despite with small drifts dr = ±15◦, our AAP observed all possible
rotation outcomes over [−180◦, 180◦]. Therefore, during the testing stage, taking d∗r = 180◦ as an
example, our policy can recognize the effect of ai = rotate(30◦ + 180◦drifts) is equivalent to the
effect of another action aj : rotate(−150◦) which was seen in the training stage. Likewise, since the
movement magnitude d ∈ {0.05 ± 0.05, 0.15 ± 0.05, 0.25 ± 0.05} can cover [0, 0.3], our model
performs well when the movement magnitude is within this range. This example highlights the
core technical contributions, namely the action-impact embedding and OI head, in this work. With
the action-impact embedding and OI head, we prevent the policy from remembering the action
semantics, and allow it to focus on modeling the effect of actions.

B TRAINING PIPELINE, HYPERPARAMETERS, AND TIME COMPLEXITY

The training pipeline for forward pass and backward update is shown in the Fig. 8. During training,
we use the Adam optimizer and an initial learning rate of 3e−4 that linearly decays to 0 over 75M
and 300M steps for the two tasks, respectively. We set the standard RL reward discounting parameter
γ to 0.99, λgae to 0.95, and number of update steps to 128 for LPPO. The α for Lforward is set to 1.
Finally, we train the policy for 75M and 200M steps for PointNav and ObjectNav respectively and
evaluate the model every 5 million steps.2

- Time complexity. Theoretically, the time-complexity for the OI transformer head is O(n2), where
the n is the number of actions in the action space. However, as the number of actions is usually
fairly small, our AAP doe snot suffer from the same problems frequently plague transformer-based
models with their n2 complexity in the sequence length. At runtime, we evaluate models by a
personal desktop with a Intel i9-9900K CPU, 64G DDR4-3200 RAM, 2 Nvidia RTX 2080 Ti GPUs.
The framework (w/ our AAP) spends ≈ 35 minutes evaluating 1.8k val episodes with 5 parallel
processes on the Point Navigation task. The average episode length is ≈ 117. As a result, the FPS
(or interaction per second) is ≈ 100.3. During the training phase, we used an AWS machine with 48
vCPUs, 187G RAM, and 4 Nvidia Tesla T4 GPUs to train the policy. The FPS (or interaction per
second) is ≈ 400 for our AAP.

Task Goal
Policy

Network
at

State Encoder

Action-Impact
Encoder

t

t - 1

Task Goal

Visual Observation (vt)

Visual Observation (vt-1)

at−1

Et

ht

OI
Head

FF-layer

Δs0,t+1

Δsi,t+1

...

= MSE(Δs, Δs*)ℒforward

ℒPPO

Forward

Backward from ℒPPO
Backward from ℒforward

Figure 8: Training Pipeline. The forward pass is in black color, the backward from LPPO is in red
color, and the backward from Lforward is in orange color.

C MODEL ARCHITECTURE DETAILS

- Ours. We follow (Khandelwal et al., 2022) and set the dimension of the belief bt and hidden
dimension to 512, and the output of ResNet is a 1568-dim goal-conditioned visual embedding. In

14

Published as a conference paper at ICLR 2023

the Action-Impact Encoder, the dimension of r* is 1024-dim for the Point Navigation and 3136
for the Object Navigation. The goal embedding is 8-dim, the hidden for the GRU is 128-dim, and
the action embedding is also 128-dim. In the policy network, the GRU is 512-dim. The OI-Head
consists of 6 layers of Transformer Encoder with 16 heads, 512-dim hidden, and 512-dim output.

- EmbCLIP (Khandelwal et al., 2022). The model architecture is the same one used in (Khandelwal
et al., 2022) which is open-sourced on AllenAct (Weihs et al., 2020)2.

- Meta-RL (Wortsman et al., 2019). The model architecture is the same as the one used in (Khan-
delwal et al., 2022), except that we add a MLP after the belief b to predict the agent-state change
for meta-learning. Instead of performing meta-update every 6-steps, we perform meta-update every
20-steps, because the maximum allowed number of steps per episode was increased from 200 to 500
in our navigation tasks. The meta-update learning rate was set to 10−4 (same as (Wortsman et al.,
2019)).

- RMA (Kumar et al., 2021). The main model architecture is the same as the one used in (Khandelwal
et al., 2022), except that we add a module to learn latent code and an adaptation module to perform
online adaptation. More specifically, we follow (Kumar et al., 2021) to encode the latent code z
(8-dim) by a 3 layer MLP (2 → 256 → 128 → 8) from motion and rotation drifts in the first
training stage. In the adaptation stage, we follow (Kumar et al., 2021) to learn the adaptation module
to predict latent code from 16 past agent-states. In details, the adaptation module consists of an
MLP embedding (3 → 14 → 32 → 32) and a 3-layer 1D Conv ([32, 32, 8, 2] → [32, 32, 3, 1] →
[32, 8, 3, 1]) over 16 past states.

- Model-Based (Zeng et al., 2021). The model architecture is the same as our proposed model,
except that the model produces action embeddings from the predicted state changes. In this way,
this baseline can utilize the next state predictions associated with different actions for planning. In
addition, it is important to note that the Policy Network for this baseline is the linear actor-critic,
instead of the proposed OI-Head.

D MORE QUANTITATIVE RESULTS

We show more quantitative results for PointNav and ObjectNav in Fig. 9, Fig. 10, Fig. 11, Fig. 12,
and Fig 13 by SPL, Episode Length, Reward, Distance to Target, and soft-SPLAs shown, the SPL,
soft-SPL, and Episode Length of competing baselines achieve better results than AAP at the modest
drifts (dr= ± 15◦,±30◦), but they perform significantly worse at more severe drifts. Note that our
AAP initially has no idea about the state-changes resulting from each action, it has to spend more
time exploring the effects of actions in the beginning of a new episode. As a result, it results in
a longer episode length comparing to the baselines with seen drifts. On the other hand, our AAP
achieves consistent SPL, Episode Length, Reward, Distance to Target, and soft-SPL across all the
drift changes and outperforms baselines remarkly. It is because AAP does not memorize action
semantics, but relies on its experiences in the inference time to embed the action embeddings E
on-the-fly. To collect useful experiences, the agent has to explore the environment and update the
embeddings accordingly. Thereby, our AAP takes more time to understand the state-changes, while
the baselines can achieve better results based on its learned action semantics in the scenarios with
the modest drifts.

- Comparison to (Adapted) Model-Based Meta-RL (Nagabandi et al., 2018). Unfortunately, a direct
comparison to (Nagabandi et al., 2018) is not feasible as, (a) we focus on point navigation and ob-
ject navigation in a clustered scene, but (Nagabandi et al., 2018) focuses on locomotion control for
a simple straight or curve line movement, (b) our main observation is visual observation, but (Naga-
bandi et al., 2018) uses agent’s state, and (c) we don’t use model-predictive controller to rollout H
time horizon future to make a decision, because the agent cannot access rewards or distance to the
goal during the testing time, so it is not straightforward to implement a simple objective function in
MPC for point navigation or object navigation task (we would argue that doing so is a research topic
in itself).

2We use the open-sourced code to train EmbCLIP https://github.com/allenai/
allenact/blob/main/projects/objectnav_baselines/experiments/robothor/
clip/objectnav_robothor_rgb_clipresnet50gru_ddppo.py.

15

https://github.com/allenai/allenact/blob/main/projects/objectnav_baselines/experiments/robothor/clip/objectnav_robothor_rgb_clipresnet50gru_ddppo.py
https://github.com/allenai/allenact/blob/main/projects/objectnav_baselines/experiments/robothor/clip/objectnav_robothor_rgb_clipresnet50gru_ddppo.py
https://github.com/allenai/allenact/blob/main/projects/objectnav_baselines/experiments/robothor/clip/objectnav_robothor_rgb_clipresnet50gru_ddppo.py

Published as a conference paper at ICLR 2023

d*m = ± 0.05m d*m = ± 0.1m d*m = 0.2m

d*r d*r d*r

SP
L

SP
L

Po
in

t
N

av
ig

at
io

n
O

bj
ec

t
N

av
ig

at
io

n

— AAP (Ours) — EmbCLIP — Meta-RL — RMA — Model-Based

0.0
0.2
0.4
0.6
0.8
1.0

20 100 180 20 100 180 20 100 180

20 100 180 20 100 180 20 100 180
0.0
0.1
0.2
0.3
0.4
0.5

d*m = 0.4m

20 100 180

20 100 180
d*r

Figure 9: Quantitative result using the SPL metric. The SPL (Anderson et al., 2018) is defined
as 1

N

∑N
n=1 Sn

Ln

max(Pn,Ln)
, where N is the number of episodes, Sn denotes a binary indicator of

success in the episode n, Pn is the path length, and Ln is the shortest path distance in episode n. Top:
PointNav evaluation. Bottom: ObjectNav evaluation. We compare the proposed AAP with baselines,
including EmbCLIP, Meta-RL, RMA, and Model-Based. We measure the SPL over different drifts,
including d∗m = {±0.05,±0.1, 0.2, 0.4} and d∗r = {±15◦,±30◦,±45◦,±90◦,±135◦, 180◦}.

d*m = ± 0.05m d*m = ± 0.1m d*m = 0.2m

d*r d*r d*r

Ep
is

od
e

Le
ng

th
Ep

is
od

e
Le

ng
th

Po
in

t
N

av
ig

at
io

n
O

bj
ec

t
N

av
ig

at
io

n

— AAP (Ours) — EmbCLIP — Meta-RL — RMA — Model-Based

0.0
100

200

300

400

500

20 100 180 20 100 180 20 100 180

20 100 180 20 100 180 20 100 180100

150

200

400

d*m = 0.4m

20 100 180

20 100 180
d*r

250

300

350

Figure 10: Quantitative result using the Episode Length metric. Top: PointNav evaluation.
Bottom: ObjectNav evaluation.

However, to have a closer implementation based on the idea proposed in (Nagabandi et al., 2018),
we combine our model-based baseline with the meta-RL baseline by employing the agent state
prediction to perform meta-learning on the model-based module. The results for point navigation
are shown in Fig. 13 in the green color by soft-SPL. Although this (Adapted) Model-Based Meta-
RL outperforms EmbCLIP slightly facing larger drifts, it is still not able to overcome the severe
drifts. It, again, highlights the effectiveness of our AAP with two major technical contributions, the
action-impact embedding and the OI head, proposed in this work.

16

Published as a conference paper at ICLR 2023

d*m = ± 0.05m d*m = ± 0.1m d*m = 0.2m

d*r d*r d*r

R
ew

ar
d

R
ew

ar
d

Po
in

t
N

av
ig

at
io

n
O

bj
ec

t
N

av
ig

at
io

n

— AAP (Ours) — EmbCLIP — Meta-RL — RMA — Model-Based

-2.5
0.0

5.0
7.5

12.5

20 100 180 20 100 180 20 100 180

20 100 180 20 100 180 20 100 180
-2.0
-1.0
0.0

3.0

d*m = 0.4m

20 100 180

20 100 180
d*r

-3.0

1.0
2.0

4.0

-5.0

2.5

10.0

Figure 11: Quantitative result using the Reward metric. Top: PointNav evaluation. Bottom:
ObjectNav evaluation.

d*m = ± 0.05m d*m = ± 0.1m d*m = 0.2m

d*r d*r d*r

D
is

ta
nc

e
to

 T
ar

ge
t

D
is

ta
nc

e
to

 T
ar

ge
t

Po
in

t
N

av
ig

at
io

n
O

bj
ec

t
N

av
ig

at
io

n

— AAP (Ours) — EmbCLIP — Meta-RL — RMA — Model-Based

0.0
1.0

2.0

3.0

4.0

5.0

20 100 180 20 100 180 20 100 180

20 100 180 20 100 180 20 100 180

2.0

2.2

2.6

3.0

d*m = 0.4m

20 100 180

20 100 180
d*r

Figure 12: Quantitative result using the Distance to Target metric. Top: PointNav evaluation.
Bottom: ObjectNav evaluation.

d*m = ± 0.05m d*m = 0.2m d*m = ± 0.05m

d*r d*r d*r

So
ft-

SP
L

Point Navigation Object Navigation

— AAP (Ours) — EmbCLIP — Model-Based Meta-RL (adapted from Nagabandi et al. (2018))

0.0
0.2
0.4
0.6
0.8
1.0

20 100 180 20 100 180 20 100 180
0.0
0.1
0.2
0.3
0.4
0.5

d*m = 0.2m

20 100 180
d*r

Figure 13: Quantitative result using the soft-SPL. soft-SPL (Datta et al., 2021) is defined as
1
N

∑N
n=1(1 − dn,termination

dn,start
) Ln

max(Pn,Ln)
, where N is the number of episodes, dn,termination and dn,start

denote the (geodesic) distances to target upon termination and start in the episode n, Pn is the
path length, and Ln is the shortest path distance in episode n. Left: PointNav evaluation. Right:
ObjectNav evaluation.

17

Published as a conference paper at ICLR 2023

Rotate()90∘

Rotate()30∘Rotate()180∘

Top-Down View (Progress)

Po
in
tN
av

Rotate()−90∘ Move(0.25)
 hits & bounce back→ Move(0.15) End

, dm = 0.2 dr = 45∘

t

Move()0.25

Top-Down View (Progress)

Po
in
tN
av

Rotate()−60∘ Rotate()−150∘ Move()0.25

, dm = 0.4 dr = 90∘

t
Top-Down View (Progress)

Po
in
tN
av

Rotate()−30∘ Rotate()180∘ Rotate()−120∘ Move()0.05

, , Disabled Rotate()dm = 0.1 dr = 0∘ θright = {30∘,60∘,90∘,120∘,150∘}

t

Move()0.15

O
bj
ec
tN
av

Move()0.05

, , Disabled Rotate()dm = 0.2 dr = − 30∘ θright = {30∘,60∘,90∘,120∘,150∘}

t

Top-Down View (Progress)

Move()0.05Move()0.15

O
bj
ec
tN
av

Move()0.05

, , Disabled Rotate()dm = 0.2 dr = 30∘ θleft = {−30∘, − 60∘, − 90∘, − 120∘, − 150∘}

t

Top-Down View (Progress)

Move()0.05

O
bj
ec
tN
av

Move()0.25

, dm = 0.05 dr = − 60∘

t

Top-Down View (Progress)

Move()0.25Move()0.15
Figure 14: Qualitative Results. Examples of PointNav (top tree rows) and ObjectNav (bottom three
rows). The agent adapts by rotating in the other direction to compensate for the disabled actions.
The first example shows the agent adopts a smaller movement magnitude to avoid the collision. The
second example shows smooth moves by a right-turn, a move, another left-turn, and a final move to
dodge the white table. The third example shows the agent uses three left turns with different angles
to make a disabled right turn. The fourth example shows the agent slows its movement magnitude as
it approaches the target object in the clustered area. The fifth example shows the agent uses two left-
turn with different angles to make a disabled right turn to find the target object. The final example
shows the agent uses a larger movement magnitude to move toward the target object in a relatively
open area.

E QUALITATIVE RESULTS

We show more qualitative results in PointNav and ObjectNav in Fig. 14. The first example shows
the agent adopts a smaller movement magnitude to avoid the collision. The second example shows
smooth moves by a right-turn, a move, another left-turn, and a final move to dodge the white table.
The third example shows the agent uses three left turns with different angles to make a disabled right
turn. The fourth example shows the agent slows its movement magnitude as it approaches the target

18

Published as a conference paper at ICLR 2023

Agent

Target Location

Agent State
Drifts and Noise

Point Navigation

Agent State
Drifts and Noise

Object State

Agent

Target LocationBall

Object Push

0.8
0.5
0.2

Action:
Acceleration to Agent

x

y

Figure 15: MPE environment in PettingZoo. We modify the MPE environment to simulate Point-
Nav and ObjectPush tasks. The goal for PointNav is to move the agent to the target location and the
goal for ObjectPush is to move the agent to push the ball to the target location. The action space
consists of 3 different accelerations towards 4 directions.

object in the clustered area. The fifth example shows the agent uses two left-turn with different
angles to make a disabled right turn to find the target object. The final example shows the agent uses
a larger movement magnitude to move toward the target object in a relatively open area.

F RESULTS ON THE MODIFIED PETTINGZOO ENVIRONMENT

We modify the PettingZoo (Terry et al., 2020) to verify the effectiveness of our AAP in a dif-
ferent environment with state observations only. We modify the MPE environment to simulate
PointNav and ObjectPush tasks, shown in Fig. 15. The MPE environment provides simple sim-
ulation of collision force when objects are too close to each other. The goal for PointNav is to
move the agent to the target location by applying acceleration to the agent. The goal for Ob-
jectPush is to move the agent to push the ball to the target location by applying acceleration to
the agent. The agent has to collide to the ball to perform the push. As shown in the figure,
there are 12 actions in action space, including Accelerate (magx, magy), where (magx,
magy)= {[±0.2, 0], [±0.5, 0], [±0.8, 0], [0,±0.2], [0,±0.5], [0,±0.8]}, corresponding to 3 different
accelerations towards 4 different directions. For PointNav, the state space is 6-dim, including agent’s
position (px, py), agent’s velocity vx, vy , GPS sensor (∆px,∆py); for ObjectPush, the state space
is 10-dim, including agent’s position (px, py), agent’s velocity (vx, vy), object’s position (ox, oy),
object’s velocity (ovx , ovy), GPS sensor (∆px,∆py). Our drifts setting for training and inference
stage are formulized as follows,

During training. At the start of a training episode, we sample the rotation drift dr ∼ U(−90◦, 90◦),
where U(·, ·) denotes a uniform distribution.

During inference. At the start of an evaluation episode, we evaluate our AAP and baselines with an
unseen rotation drift d∗r ∈ {±120◦,±135◦,±150◦,±180◦}.

With a rotation drift dr, the environment applies the dr to the input action by rotating the acceleration
direction:

magenv =

[
cos(dr) sin(dr)
−sin(dr) cos(dr)

]
magT

input. (1)

In this case, the actual direction of acceleration would be drifted according to the rotation drift dr.

Models. The details about our AAP and the considered baselines are as follows,

- GRU simply uses a 4-layer MLP ([|state| → 64 → 64 → 64]) as the state-encoder to obtain a
64-dim hidden state ht, applies a RNN (GRU) to obtain a 64-dim belief bt over ht, and uses a linear
actor-critic head to predict an action at via bt.

- LAC is a variant of our AAP that uses a linear actor-critic head instead of our OI head.

19

Published as a conference paper at ICLR 2023

d*r = ± 120∘ d*r = ± 135∘ d*r = ± 150∘

checkpoints checkpoints checkpoints

Su
cc

es
s R

at
e

Su
cc

es
s R

at
e

Po
in

t
N

av
ig

at
io

n
O

bj
ec

t
Pu

sh

— AAP (Ours) — Model-Based — GRU — LAC

0.0
0.2

0.4

0.6

0.8

1.0

1M 20M 1M 20M 1M 20M

d*r = 180∘

1M 20M

checkpoints
1M 20M 1M 20M 1M 20M 1M 20M

0.0
0.2

0.4

0.6

0.8

1.0

Figure 16: Success Rate in MPE environment. Top: PointNav evaluation. Bottom: ObjectPush
evaluation. We train each model by 3 different random seeds and show the average success rate and
1× standard deviation in this figure.

d*m = ± 0.05m d*m = ± 0.1m d*m = 0.2m

d*r d*r d*r

Su
cc

es
s R

at
e

(S
R

)

Po
in

t N
av

ig
at

io
n

in
 G

ib
so

n
v1

0.0
0.2
0.4
0.6
0.8
1.0

20 50 90 20 50 90 20 50 90

d*m = 0.4m

20 50 90
d*r

— AAP (Ours) — EmbCLIP

Figure 17: Success Rate on Point Navigation in Habitat Environment. We compare the pro-
posed AAP with EmbCLIP. The evaluation drifts are unseen during the training stage, including
d∗m ∈ {±0.05m,±0.1m, 0.2m, 0.4m} and d∗r ∈ {±15◦,±30◦,±45◦,±90◦} The experiments are
conducted in Habitat-Lab v0.2.1 on Point Navigation with Gibson v1.

- Model-based is a model-based forward prediction approach for the agent state-changes ∆s asso-
ciated with different actions. It further embeds the prediction into action embeddings. Finally, this
baseline uses a linear actor-critic to make a prediction.

- Our AAP uses the same 4-layer MLP used in GRU baseline to produce state encoding for pre-
vious state and the current state, respectively. Then, same as our AAP used in AI2THOR, the
action-impact encoder uses a RNN (GRU) to produces the n× 64-dim action impacts embedding E
associated with different actions. Later, the model uses a RNN (GRU) in the policy obtain a 64-dim
belief bt. Finally the OI head operates on the concatenation of E and bt to make a prediction.

Results. We train every model by PPO with the Adam optimizer and an initial learning rate of 1e−3
that linearly decays to 0 over 20M. We set the standard RL reward discounting parameter γ to 0.99,
λgae to 0.95, and number of update steps to 200 for LPPO. The α for Lforward is set to 1. Finally, we
train each model by 3 different random seeds and obtain the average success rate and 1× standard
deviation. We evaluate models every 1M steps (checkpoint). The evaluation results are presented in
Fig. 16. As shown in the figure, our AAP performs consistently well across all rotation drifts on both
tasks in the modified MPE environment. The best baselines cannot even achieve any success rate
when facing the extremest rotation drift d∗r = 180◦. It verifies that the effectiveness of the proposed
AAP on a general reinforcement learning environment. We will release the code for this modified
environment and experiments as well.

20

Published as a conference paper at ICLR 2023

G RESULTS ON THE HABITAT ENVIRONMENT

To conduct the experiments in Habitat (Savva et al., 2019), we made a small change in the Habitat’s
Move Forward action, where every Move Forward only moves the agent by 0.01m. If the
action ai = Move Forward(0.25), the environment would move the agent by 25 times. In
this way, we can implement the movement drifts as we did in AI2-THOR. For the rotation action,
we do not use the default TURN RIGHT or TURN LEFT action. We instead directly compute the
quaternion to implement the continuous rotation with rotation drifts. In this modified Habitat, we
train the EmbCLIP and our AAP on Point Navigation task in Gibson v1 (Xia et al., 2020). The
simulator is Habitat-Lab v0.2.1. The training settings are the same as the settings used in AI2-
THOR, including the same training drifts, same learning schedule, same optimization algorithm,
and learning objective. During the evaluation, we evaluate the model on only movement drift d∗m ∈
{±0.05m,±0.1m, 0.2m, 0.4m} and rotation drift d∗r = {±15◦,±30◦,±45◦,±90◦}. As shown
in Fig. 17, our AAP performs consistently across all movement and rotation drifts. However, the
EmbCLIP is struggling with larger drifts.

21

