
Pushing it out of the Way: Interactive Visual Navigation

Kuo-Hao Zeng1 Luca Weihs2 Ali Farhadi1 Roozbeh Mottaghi1,2
1Paul G. Allen School of Computer Science & Engineering, University of Washington

2PRIOR @ Allen Institute for AI
prior.allenai.org/projects/interactive-visual-navigation

Figure 1: Visual navigation may require interactions that go beyond moving forward/backward, and turning left/right. For
example, the agent in the top row needs to push the chair out of its way to reach the target. Interactive navigation entails
deeper understanding of the outcome of agents actions on objects in the scene. In this paper, we introduce Neural Interaction
Engine (NIE) to explicitly predict the effect of actions on objects poses. By integrating NIE with our policy network we
show that we can perform long-horizon planning while predicting the outcome of the actions. We evaluate NIE for visual
navigation where the path to the goal is obstructed, and moving objects to specific locations in the scene and show major
improvements over state of the art in these tasks.

Abstract

We have observed significant progress in visual naviga-
tion for embodied agents. A common assumption in study-
ing visual navigation is that the environments are static; this
is a limiting assumption. Intelligent navigation may involve
interacting with the environment beyond just moving for-
ward/backward and turning left/right. Sometimes, the best
way to navigate is to push something out of the way. In this
paper, we study the problem of interactive navigation where
agents learn to change the environment to navigate more ef-
ficiently to their goals. To this end, we introduce the Neural
Interaction Engine (NIE) to explicitly predict the change in
the environment caused by the agent’s actions. By model-
ing the changes while planning, we find that agents exhibit
significant improvements in their navigational capabilities.
More specifically, we consider two downstream tasks in the
physics-enabled, visually rich, AI2-THOR environment: (1)
reaching a target while the path to the target is blocked (2)
moving an object to a target location by pushing it. For both
tasks, agents equipped with an NIE significantly outperform
agents without the understanding of the effect of the actions

indicating the benefits of our approach.

1. Introduction

Embodied AI has witnessed remarkable progress over
the past few years owing to advances in learning algorithms,
benchmarks, and standardized tasks. A popular task that has
received a considerable amount of attention is visual navi-
gation [3, 5, 8, 29, 39, 48], where the goal is to navigate
towards a specific coordinate or object within an unseen en-
vironment. One of the common implicit assumptions for
these navigation methods is that the scene is static, and the
agent cannot interact with the objects to change their pose.

Consider the scenario that the path of the agent towards
the target location is blocked by an obstacle (e.g., a chair)
as shown in Fig. 1 (top). To reach the target, the agent has
to move the obstacle out of the way. Therefore, planning
for reaching the target requires not only understanding the
outcome of agent actions but also the dynamics of agent-
object interactions. There are many factors such as object
size, spatial relationship with other objects in the scene, and

prior.allenai.org/projects/interactive-visual-navigation

reaction of the object to the applied forces, that influence
the outcome of the interaction with the object. Hence, long-
horizon planning for navigation conditioned on the object
dynamics offers unique challenges that are often overlooked
in the recent navigation literature.

The first challenge is to learn whether an action affects
the pose of an object or not. Navigation actions (e.g., rotate
right or move ahead) typically do not affect the position of
objects in the world coordinate frame while interaction ac-
tions (e.g., pushing an object) can change the object pose.
The objects move in the ego-centric view of the agent due to
agent movements or interaction with objects. Learning how
objects move as a result of camera motion or interaction im-
poses the second challenge. Learning how to interact with
objects is another challenge. For example, the agent should
learn that pushing an object against a wall does not change
its pose.

In this paper, we propose a novel model for navigation
while interacting with objects within a scene that jointly
plans a sequence of actions and predicts the changes in the
scene conditioned on those actions. More specifically, the
model includes a Neural Interaction Engine (NIE) module
that predicts the affine transformation of objects from the
perspective of the agent conditioned on the actions. The
goal is to learn if/how the actions affect the pose of the ob-
jects. The NIE module receives gradients for not only the
prediction of the pose in the next frame but also the naviga-
tion policy.

We evaluate our model on two downstream tasks Ob-
sNav and ObjPlace. The goal of ObsNav is to reach a spe-
cific coordinates in a scene while the paths from the initial
location of the agent to the target are blocked by objects.
The goal of ObjPlace is to push an object on the floor while
navigating so it reaches a target point. These are challeng-
ing tasks since the agent requires an accurate understand-
ing of the dynamics of the objects and their interaction with
other objects in the scene. We perform our experiments in
120 scenes of the physics-enabled AI2-THOR [19] environ-
ment. Our experiments show significant improvement over
baselines that are not capable of explicitly predicting the ef-
fect of interactions showing the merit of our NIE model.

In summary, we highlight three primary contributions.
(1) We propose Neural Interaction Engine, as a model for
predicting the state of the observed objects conditioned on
the agent actions. (2) We propose new datasets for two
navigation-based tasks using a physics-enabled framework,
which enables changing the pose of objects and models rich
object-object and agent-object interactions. (3) We show
that predicting the outcome of actions is a crucial capability
for embodied agents by showing significant improvements
over baselines that do not possess this capability.

2. Related Work
Action-conditioned learning of rigid body dynamics.
The goal of these works is to learn the dynamics of rigid
body motion under the effect of applied actions. Byra-
van and Fox [6] segment a point cloud into salient regions
and predict the rigid body motion. Li et al. [21] learn to
re-position and re-orient an object with unknown physical
properties. Several works [11, 12, 13, 46] have proposed
formulations of visual Model Predictive Control, where the
central insight is that a predictive model of sensory in-
put is a powerful signal for learning to perform tasks. A
number of other strategies for action-conditioned learning
have been proposed, these include: learning latent physi-
cal properties of objects using visual observation of interac-
tions with those objects [45], learning forward and inverse
scene dynamics from object interaction data [26], represent-
ing scenes as object-centric graphs and learning to predict
changes in object pose after applying a push action [28],
learning the dynamics of balls and walls in the game of bil-
liards [14], and modeling the dynamics of robot interactions
by jointly estimating forward and inverse models of dynam-
ics [1]. In contrast to all of these approaches, we consider
the more complex mobile robot scenario, where we factor-
ize the effect of robot motion and object motion.
Learning dynamics from perception. The dynamics of
objects can be inferred from images and videos alone with-
out any interaction. [35] decompose frame-to-frame pixel
motion into scene depth, 3D camera rotation and transla-
tion, and a set of object regions with their corresponding
3D motion. [22] reason about the underlying physical prop-
erties of objects that appear in a sequence of frames and
predict future motion of those objects. [17, 41] jointly train
a perception module, an object-based physics engine and
a renderer to generate the future predictions. [7] propose
Neural Physics Engine that outputs the future states of ob-
jects and their properties. [36] also infers the physical state
of objects from video input and predict their future trajecto-
ries. [40] infer physical properties of objects such as mass
and density from videos. [24, 25, 46, 47] predict the dynam-
ics of objects and their future trajectory. These approaches
focus on simple scenarios (such as balls of uniform mass or
a stack of cubes), no agent action is considered or assume a
static camera.
Visual navigation. The tasks that we consider in this pa-
per involves visual navigation. Visual navigation has been
addressed in various papers in recent Embodied AI liter-
ature. Most works focus on point navigation (PointNav)
[3, 9, 29, 38] or object navigation (ObjectNav) [5, 8, 10, 39].
Our task is different since in these works only static scenes
are considered.

Our task is closer to existing tasks that consider naviga-
tion among movable obstacles [4, 18, 23, 31, 32, 43, 44].
The difference with [31, 32] is that those works are not

Task Goal
Representation

Neural Interaction
Engine

Policy
Network

g

v

ra
a

Visual Encoder

Embedding

fi

Figure 2: Model overview. Our model includes three main
parts: Visual Encoder, Neural Interaction Engine, and Pol-
icy Network.

learning-based and generalization to unseen scenes is not
evaluated. Our task differs from that of [44] in that our agent
applies forces to objects with different magnitudes and di-
rections (as opposed to moving objects by colliding with
them). Our approach also shows significant improvements
over the vanilla RL approaches used in [44].

3. Model
In this section, we begin by providing an overview of the

proposed model. We then introduce our Neural Interaction
Engine (NIE) and explain how we integrate the NIE into the
policy network. Finally, we describe the learning objective
and how we learn the entire model with the NIE module.

3.1. Model Overview

Our model has three main components: a visual encoder,
Neural Interaction Engine, and a policy network, as illus-
trated in Fig. 2. First, the visual encoder produces a repre-
sentation v from a visual observation i. The visual obser-
vation includes an RGB image captured by a mounted cam-
era and a depth image captured by a depth sensor. The vi-
sual encoder is a convolutional neural network aiming to ex-

Pull Right Push Move AheadPush

p

pa

Figure 3: Keypoint examples. The top row shows ob-
ject keypoints po and bottom row shows action-conditioned
keypoints pa

o resulted from Push, Pull, RightPush and
MoveAhead actions. The keypoints are showon in red.

tract informative features from the given observation. Sec-
ond, the NIE, which receives the same input observation
i, extracts keypoints po of an object o ∈ O, and predicts
keypoint locations pa

o after applying each action a ∈ A.
Fig. 3 shows typical examples of pchair and pa

chair after
applying Push, Pull, RightPush and MoveAhead ac-
tions. More specifically, the NIE predicts affine transfor-
mation matrices ma

o ∈ R4×4 corresponding to each ob-
ject and each action. Then, we derive the pa

o by translat-
ing and rotating the po via ma

o in 3D space. Applying the
affine transformation to the keypoints preserves the rigid
body constraint while moving keypoints of the same ob-
ject. The NIE summarizes both the extracted keypoints and
the action-conditioned keypoints into an action-conditioned
state feature ra. In this way, the NIE provides possible out-
comes resulting from each action to the policy network. Fi-
nally, given a goal representations g, the policy network uti-
lizes both v and ra to generate an action a for the agent.

3.2. Neural Interaction Engine

The NIE operates by first extracting object keypoints
p ∈ RO×(N×3), where N denotes the number of key-
points, O denotes the observed objects, and each p ∈ R3

describes a point in the three dimensional space, and then,
based on these keypoints, predicting the action-conditioned
keypoints pa ∈ RO×|A|×(N×3) for each action a in the ac-
tion space A. The engine captures a summary of possible
outcomes for each action and object. These summaries are
used by the policy network to sample an action a.

As shown in Fig. 4, the input to NIE includes the obser-
vation i, which includes an RGB frame and a depth map,
the visual representation v from the visual encoder, the ob-
ject category embedding, and the action index embedding.
The observation is first passed through a MaskRCNN [16]
to obtain object segmentations. To extract the keypoints, we
heuristically detect 8 corner points in an object segment as
the keypoints for this object (see Sec. A for more details).
We used a heuristic approach to find the keypoints, but any
other keypoint detection approach (e.g., [20, 33]) could be
used instead. Further, using the depth map and camera pa-
rameters of the agent, we back project the keypoints onto
the 3-dimensional space.

To predict the outcome of each action, the NIE predicts
affine transformation matrices for each object and action,
as shown in the Affine Transformation module in Fig. 4. In
practice, we first embed the keypoints p into hidden fea-
tures and concatenate it with the object category embed-
ding as well as the action index embedding. Then, we
use an MLP to predict the affine transformation matrix
m ∈ RO×|A|×4×4 for all objects O and all actions in the
action space A. We translate and rotate the keypoints p ac-
cording to m to obtain pa. Since each ma

o ∈ m encodes the
information associated with object category and the action

o

M
LP

m pa

M
LP

Average

M
LP

p
c

ca

C
oncatenate

r S
elf-A

ttention

s

sa

a

C
oncatenate

ra

i

Average

Affine Transformation

R
epeat

S
egm

enter
E

ncode
E

ncode

Encode Attention

R
epeat

v

M
LP

M
LP

Avg. P
ooling

Figure 4: Neural Interaction Engine. The inputs to the neural interaction engine are action indices, object categories, visual
representation v from the visual encoder, and visual observation i, which includes an RGB image and a depth map. After
encoding each input modality, the engine uses an MLP to predict the affine transformation matrices to translate and rotate
keypoints p to pa corresponding to all objects and all actions. Then, the engine encodes the average of keypoints into hidden
features s as well as sa. Finally, the engine utilizes a self-attention layer to summarize the hidden features into a semantic
action-conditioned state representation ra.

a, the predicted keypoints not only contain semantic mean-
ing, but also carry action-dependent information.

To encode keypoints and their corresponding action-
conditioned keypoints, we first compute the center (c and
ca) of both p and pa by averaging the coordinates along
each axis (i.e, cx = 1

N

∑N
n=1 p

n
x , cy = 1

N

∑N
n=1 p

n
y ,

cz = 1
N

∑N
n=1 p

n
z). Further, we employ a state encoder

to encode c and ca into hidden features (s and sa), as shown
in the Encode module in Fig. 4.

The hidden features s and sa are then concatenated
with the object category embedding to construct a seman-
tic action-conditioned state representation r. Furthermore,
we perform Self-Attention [34] on r over the object cate-
gory axis and an Average-Pooling layer to obtain the action-
conditioned state representation ra, as illustrated in the At-
tention module in Fig. 4. The reason for this step is not only
to make the action-conditioned representation more com-
pact, but also to directly associate it to each action.
Integrating NIE output into the Policy Network. We
construct a global representation f by concatenating the
goal representations g (e.g., target location encoding for the
point navigation task), visual representation v, and action-
dependent state features ra. The policy network takes f
as the input and outputs a probability distribution over the
action space. The agent samples an action from this distri-
bution to execute in the environment.

3.3. Learning Objective

To train the model to learn the affine transformation ma-
trix, we use the pose of an object before and after applying
an action a in the environment to construct the ground truth
affine transformation matrix. Then, we apply this ground
truth affine transformation matrix to the keypoints p to ob-
tain the ground truth action-conditioned keypoints ta. We

Affine Transformation

E
ncode

A
ttention

Neural Interaction Engine

C
oncatenate

Policy N
etw

ork

a*f

Visual Encoder

Embedding

pa*
O*

ℒNIE ℒPPO

Figure 5: Training pipeline. The entire model is trained by
LPPO and the Affine Transformation module is trained by
LNIE. However, the gradients backpropagated fromLNIE are
only used to update the parameters corresponding to pa∗

O∗ ,
where O∗ are the observed object categories and a∗ is the
action taken by the agent. The tensors corresponding to pa∗

O∗

are highlighted in red.

cast the learning as a regression problem and use L1 loss
to optimize NIE. The agent can only pick one action to ex-
ecute at each timestamp. Hence it is not possible to obtain
the ground truth action-conditioned keypoints ta for all pos-
sible actions a ∈ A. The agent only observes few objects
among the object categories O, so we do not backpropagate
the gradients back to the object categories that are not ob-
served. As a result, during the training stage (as illustrated
in Fig. 5), we only compute the loss for the executed action
and backpropagate the gradients only through the path cor-
responding to a∗, the action that is actually executed by the
agent and also the observed object categories O∗ ⊂ O:

LNIE = L1(pa∗

O∗ , ta
∗

O∗). (1)

Further, to learn the policy network, we employ the Prox-
imal Policy Optimization (PPO) [30] to perform an on-
policy reinforcement learning, as illustrated in Fig. 5. The
overall learning objective is L = LPPO + αLNIE, where the
α ≥ 0 is a hyperparameter controlling the relative impor-
tance of the NIE loss.

4. Experiments
To evaluate the effectiveness of the proposed Neural In-

teraction Engine, we evaluate it on two downstream tasks.
In the following, we first describe the two downstream
tasks. We then describe environment details and the datasets
we have collected for training and evaluating the proposed
framework. Further, we provide the implementation details
in Sec. 4.1. In Sec. 4.2 and Sec. 4.3, we introduce our com-
parative baselines and variations of our model. Finally, we
present quantitative and qualitative results in Sec. 4.4.
Downstream tasks. We consider two downstream tasks for
our experiments:

• ObsNav – The goal of ObsNav is to move from a ran-
dom starting location in a scene to specific coordinates
while the path to the target point is blocked by obsta-
cles on the floor. This is similar to PointNav [3] with
the difference that the agent should move objects out
of the way to reach the target.

• ObjPlace – The second downstream task that we con-
sider is ObjPlace. The goal is to move an object on
the floor from a random starting location to a specified
coordinate in a scene. This task requires successive
application of a force to an object while navigating to-
wards the target point.

Successful completion of these tasks requires reasoning
about the outcome of the agent actions while performing
long-horizon planning. Therefore, they are suitable testbeds
to evaluate our model.
Environment settings. In this work, we perform exper-
iments on AI2-iTHOR [19] v2.7.2, which provides fairly
accurate physical properties of objects. AI2-iTHOR is
built using the Unity game engine which enables the sim-
ulation of physical agent-object and object-object interac-
tions. In this environment, we consider actions A = {
MoveAhead, RotateRight, RotateLeft, LookUp,
LookDown, Push, Pull, RightPush, LeftPush,
END}, where MoveAhead moves the agent ahead by
0.25 meters, RotateRight and RotateLeft change
the agent’s azimuth angle by ±90 degrees, LookUp and
LookDown rotate the agent’s camera elevation angle by
±30 degrees, the Push, Pull, RightPush, as well as
LeftPush let the agent push (along ±z and ±x axis) the
closest observed object by applying a force of 100 newtons.
The agent issues the END to indicate that it has completed

an episode. Fig. 3 shows four typical examples where the
agent applies Push, Pull, RightPush, LeftPush ac-
tions. Finally, we set the height and width of RGB and depth
images to 224. Thereby, the ground truth object segmenta-
tion used to learn the NIE is also of the same dimensions.
Data collection. We use Kitchens, Living Rooms, Bed-
rooms, and Bathrooms for our experiments (120 scenes in
total). We follow the common practice for AI2-THOR
wherein the first 20 scenes are used for training, the next
5 for validation, and the last 5 for testing in each scene cate-
gory. To collect the datasets, we use 20 categories of objects
such as Chair, SideTable, and DogBed. Please see
Sec. B for the used objects. These objects are used as ob-
stacles for ObsNav and as objects that should be displaced
in ObjPlace. These objects are spawned on the floor for the
downstream tasks. For each object category we have 5 dif-
ferent variations. We randomly select the first 4 variations
to collect the training and validation data and use the 5th
variation to collect the test data.

To generate the dataset for ObsNav, we utilize an undi-
rected graph to compute the path from the agent’s starting
location to the target location. Then, we randomly spawn
an object to block the path. To ensure that there is no way
that the agent can directly reach the target location with-
out moving an object, we repeat this process until there is
no path between the agent’s starting location (source node)
and target location (end node). The top row in Fig. 6 shows
five examples in this dataset.

To generate the dataset for ObjPlace, we first create a
yellow mark at a random location on the floor in a scene
to indicate the target location. We then spawn an object at
another random location, which is at least 2 meters away
from the target location. In total, we collect 10k training
instances, 2.5k validation instances, and 2.5k testing in-
stances for each task. The bottom row in Fig. 6 shows five
examples in this dataset.

4.1. Implementation details

In this work, we use the AllenAct [37] framework to
conduct experiments. We train our model using both LPPO
and LNIE simultaneously. We set the α parameter in Sec-
tion 3.3 to 3. We discuss the effect of α on the performance
in Sec. 4.4. For ObsNav/ObjPlace, an episode is success-
ful if the agent invokes END while the agent/object reaches
a position within 0.2 meters of the target position. During
the training stage, we perform the on-policy reinforcement
learning (PPO) with 80 processes simultaneously. We use
Adam with initial learning rate of 3 · 10−4 which decays
linearly to 0 during training. We set the standard RL reward
discounting parameter γ to 0.99, λgae to 0.95, and number
of update steps to 30 for LPPO. The gradients ∆ are clipped
to satisfy |∆| <= 0.5. We train the policy for 10 million
steps and evaluate the model every 1 million steps.

Figure 6: Dataset examples. Top: five examples in ObsNav dataset, where the blue boxes are obstacles and the yellow circle
is the target position. Bottom: five examples in ObjPlace dataset, where the red boxes are the object that should be displaced
and the yellow circle is the target place.

During the training stage, we use the ground truth ob-
ject mask provided by the environment, while in the testing
stage, we employ a pre-trained MaskRCNN [16] to extract
the segmentation. The number of output classes for both
ground truth segmentation and MaskRCNN is 21, includ-
ing 20 used objects and a background class. We use [42]
to pre-train the MaskRCNN (ResNet-50 with FPN) on our
training scenes with 8k images for 10 epochs. Please see
Sec. C for more details about the qualitative results gener-
ated by the MaskRCNN on our validation scenes.
Model architecture. Because the visual observation i in-
cludes an RGB image and a depth image, we employ two
different CNNs, with different input number of channels, in
the Visual Encoder to handle these two observations sepa-
rately. After the CNNs extract features from both observa-
tions, we use a linear layer to fuse the two features together.
In both tasks, we provide the observation from a GPS sensor
to the policy network. The GPS’s observation is a coordi-
nate of the target position for ObsNav or the target place for
ObjPlace. In addition to the GPS’s observation, we employ
a look-up embedding to encode the category of the target
object for ObjPlace. The Encode and MLP shown in Fig. 4
are a look-up embedding layer and a multi-layer percep-
tron, respectively. The Self-Attention layer has three MLPs
as well to handle the key, query, and value embedding. Our
policy network consists of a GRU state encoder, a linear
layer for the actor (policy), and a linear layer for the critic
(value). Please refer to Sec. D for more details about each
model components such as the number of layers and hidden
dimension.
Reward shaping. We consider a task successful if the
agent invokes the END when the agent achieves the goal.

For ObsNav, the goal is to reach within a certain distance
(0.2 meters) to the target location and for ObjPlace, the ob-
ject should have overlap with the yellow target mark. If the
agent succeeds in an episode, we provide a reward of +10.
We find reward shaping [27] important to learn the policy
in the two studied tasks. We implement reward shaping for
each task as follows:
• ObsNav: Similar to [29], we implement the reward shap-
ing based on geodesic distance. We provide a reward to
the agent after it takes an action based on the change in the
geodesic distance between the current agent position and
the target position. If the agent takes an action resulting in
a decrease of the geodesic distance, the agent receives the
decreased amount as the reward. Otherwise, if the taken ac-
tion causing an increase in the geodesic distance, the agent
receives the amount of increase as a penalty. There are ob-
stacles blocking the paths to the destination, so we also en-
courage the agent to take actions to move the obstacles out
of the way. Therefore, the environment provides a −0.5
penalty if the agent takes any action that blocks a path be-
tween the agent and the goal and conversely, a 0.5 reward
if the agent’s action opens a new path to the goal. We let
rdis/appear = −0.5 if the agent’s action resulted in blocking
a path, rdis/appear = 0.5 if the agent’s action opened a path,
and rdis/appear = 0 otherwise.
• ObjPlace: For this task, we perform reward shaping only
based on the geodesic distance. We provide a reward to the
agent after it takes an action according to the change in the
geodesic distance between the current object position and
the target position.

To encourage the agent to finish the task as quickly as
possible, we also add a small penalty −0.01 at each step.

As a result, the total reward at step t is:

rt =

{
rs + rdis/appear + dt−1 − dt + p if goal is reached,
rdis/appear + dt−1 − dt + p otherwise,

where rs is set to 10, dt denotes the geodesic distance be-
tween the agent (object) and the target position at step t, and
p is the step penalty which equals −0.01 and −0.002 for
ObsNav and ObjPlace, respectively. Note that the rdis/appear
is removed in the ObjPlace task. However, adding rdis/appear
is essential to the ObsNav task, since the policy network
with visual observation i but without rdis/appear does not gen-
eralize to the unseen environments even after 10 million
steps of training.

4.2. Baselines

We compare our model with the following baseline
methods. Each baseline uses the same visual encoder and
policy network unless stated otherwise.
PPO. This baseline is a Reinforcement Learning based ap-
proach that has a visual encoder to extract features from
visual observation i and an embedding layer to encode the
GPS readings. The model is trained by Proximal Policy Op-
timization [30] and we use the same learning hyparameters
mentioned in Sec. 4.1 to train using this method.
RGB-D and object segmentation input (RGB-D-S). This
baseline includes a segmentation image as well as the visual
observation i. We extend the Visual Encoder by another
CNN to extract features from the segmentation image. As
mentioned in Sec. 4.1, we use the ground truth segmenta-
tion during the training stage and the results generated by
MaskRCNN (fine-tuned on our data) during the evaluation.
RGB-D and keypoints input (RGB-D-K). To understand
if the keypoints representation extracted from object seg-
mentation is more meaningful than a pure segmentation
image input, we implement this baseline by including the
keypoints extracted by the same heuristic corner detector
(Sec. 3.2) used in our model as an additional input. To en-
code the keypoints, we use the same model architecture as
the NIE module to obtain the semantic action-conditioned
state representation ra as well. However, the LNIE is not
used to learn the NIE module in this baseline. The parame-
ters are updated by the gradients from LPPO only.
PPO + auxiliary loss. We implement a baseline based on
CPC|A [15] to facilitate the policy learning upon the PPO
baseline. During the training stage, the CPC|A utilizes Con-
trastive Predictive Coding as an auxiliary loss to perform
predictive representation learning. To have a fair compar-
ison, we use a GRU with the same hidden size and only
predict one time step in the future.

4.3. Ablations

To perform ablation studies, we evaluate the following
variations of our NIE model.

Methods SR (%) ↑ FDT (m) ↓ SPL ↑
Baselines:

PPO [30] 67.1 0.605 25.7
RGB-D-S 62.8 0.499 25.0
RGB-D-K 70.9 0.459 25.8
CPC|A [15] 73.8 0.370 29.8

NIE (ours) 80.0 0.304 31.3
Ablations:

NIE w/o VO 72.7 0.375 29.2
NIE w/ 1× LNIE 74.1 0.377 29.7
NIE w/ 10× LNIE 78.2 0.278 31.0

Table 1: ObsNav results. We show the result of our method
(referred to as ‘NIE’) along with baselines and ablations of
our model. We use ↑ and ↓ to denote if larger or smaller
values are preferred. We repeat the experiments three times
and report the average.

NIE w/o visual observations. To understand if the visual
observation i can help the prediction of affine transforma-
tion matrices and the action-conditioned keypoints pa, we
implement this model by removing the visual input from
the NIE. Therefore, the NIE only takes the keypoints in co-
ordinate representation with action indices as well as object
categories. We use the same hyperparameters and optimiza-
tion approach mentioned in Sec. 4.1 to train this model.
NIE w/ 1× LNIE. We decrease α, which is used to balance
the LNIE and LPPO. This provides us with an insight about
the importance of LNIE to learn the entire model.
NIE w/ 10 × LNIE. In this ablation study, we increase the
α, which is used to balance the LNIE and LPPO, to 10. This
study shows if a large value of α would have a negative
impact on the final performance.

4.4. Results

Evaluation Metrics. We evaluate all models by Suc-
cess Rate (SR), Final Distance to Target (FDT), and Suc-
cess weighted by Path Length (SPL) [2] for both tasks.
SR is the ratio of the number of successful episodes to
the total number of episodes, FDT is the average dis-
tance between agent/object and the target position as the
agent issues END or an episode reaches the maximum
number of allowed steps (500), and the SPL is defined
as 1

N

∑N
n=1 Sn

Ln

max(Pn,Ln)
, where N is the number of

episodes, Sn denotes a binary indicator of success in the
episode n, Pn is the path length, and Ln is the shortest path
distance in episode n.
ObsNav. The quantitative results of the ObsNav task are
shown in Table 1. Our method outperforms the baselines in
all three metrics, which justifies the effect of using the NIE
model. The performance drops for ‘NIE w/o VO’ ablations,
which shows that visual information is required to estimate
the location of objects. For example, if an object is pushed
against a wall, the visual information helps to reason that

Top-Down View (Start) Top-Down View (Finish)

Obstacle Obstacle

Goal

O
bs
N
av

O
bj
Pl
ac
e

Object

Object

Object
Object

Goal
Goal

Goal

Figure 7: Qualitative results. Top: An example of the ObsNav task is shown. The blue box is the obstacle the agent should
move away to unblock the path (the blue marking is just for visualization purposes and not visible to the agent). The agent’s
movement is shown by a dashed trajectory in red in the rightmost image. Bottom: An example of the ObjPlace task, where
the red box is the object that should be displaced and the orange circle is the target location. The object’s movement is shown
by a trajectory in red color.

Methods SR (%) ↑ FDT (m) ↓ SPL ↑
Baselines:

PPO [30] 1.2 3.18 0.85
RGB-D-S 1.2 3.15 0.85
RGB-D-K 1.3 2.84 0.88
CPC|A [15] 12.0 2.35 9.3

NIE (ours) 17.5 2.22 14.2
Ablations:

NIE w/o VO 0.8 3.07 0.41
NIE w/ 1× LNIE 15.3 2.11 13.1
NIE w/ 10× LNIE 13.6 2.26 11.5

Table 2: ObjPlace results. We show the result of our
method (referred to as ‘NIE’) along with baselines and ab-
lations of our model. We use ↑ and ↓ to denote if larger
or smaller values are preferred. We repeat the experiments
three times and report the average.

the object will not move. It is not feasible to make such pre-
dictions just by using the keypoint information alone. Our
results on ‘NIE w/ 1×LNIE’ and ‘NIE w/ 10×LNIE’ show
that completely relying on the NIE model is not sufficient
and we need exploration as well. On the other hand, ex-
ploration alone is not sufficient. Therefore, a good balance
between future prediction and exploration is required.
ObjPlace. The results are shown in Table 2. As shown,
there is a huge difference between the baseline models and
our model. We investigated the reason for this huge gap.
Most of the time the baseline agent pushes other objects as
well and eventually blocks the path towards the target.
Qualitative Results. We show qualitative results in Fig. 7.
The top row shows a successful episode of ObsNav, where
the agent pushes the garbage can away to unblock the path.

The bottom row show an example of the ObjPlace task,
where the agent moves the box toward the goal position.
It is interesting to note that the agent goes around the ob-
ject of interest so it can push it towards the target location.
We provide a supplementary video to show more success-
ful and failure cases. We also provide qualitative results of
keypoint prediction in Sec. E. We show how well the NIE
model predicts the future location of keypoints conditioned
on the actions.

5. Conclusion
We study the problem of predicting the outcome of ac-

tions in the context of embodied visual navigation tasks.
We propose Neural Interaction Engine (NIE) to encode the
changes to the environment caused by navigation and inter-
action actions of the agents. We incorporate NIE into a pol-
icy network and show its effectiveness in two downstream
tasks that require long-horizon planning. The goal of the
first task is to reach a target point in an environment while
the paths to the target are blocked. The second task requires
navigating to a target point while pushing an object. Our
evaluations show the effectiveness of the NIE model in both
scenarios, where we achieve significant improvements over
the methods without the capability of predicting the effect
of actions on the surrounding environment.

Acknowledgements.

We thank members from RAIVN Lab at the University
of Washington and PRIOR team at Allen Institute for AI
for valuable feedbacks on early versions of this project.
This work is in part supported by NSF IIS 1652052, IIS
17303166, DARPA N66001-19-2-4031, DARPA W911NF-
15-1-0543 and gifts from Allen Institute for AI.

References
[1] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Ma-

lik, and Sergey Levine. Learning to poke by poking: Expe-
riential learning of intuitive physics. In NeurIPS, 2016. 2

[2] Peter Anderson, Angel Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
et al. On evaluation of embodied navigation agents. In arXiv,
2018. 7

[3] Peter Anderson, Angel Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir R. Zamir. On evaluation of embodied navigation
agents. arXiv, 2018. 1, 2, 5

[4] Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J
Davison, Jia Deng, Vladlen Koltun, Sergey Levine, Jitendra
Malik, Igor Mordatch, Roozbeh Mottaghi, et al. Rearrange-
ment: A challenge for embodied ai. ArXiv, 2020. 2

[5] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Olek-
sandr Maksymets, Roozbeh Mottaghi, Manolis Savva, A.
Toshev, and Erik Wijmans. Objectnav revisited: On evalua-
tion of embodied agents navigating to objects. arXiv, 2020.
1, 2

[6] Arunkumar Byravan and Dieter Fox. Se3-nets: Learning
rigid body motion using deep neural networks. In ICRA,
2017. 2

[7] Michael B Chang, Tomer Ullman, Antonio Torralba, and
Joshua B Tenenbaum. A compositional object-based ap-
proach to learning physical dynamics. In ICLR, 2017. 2

[8] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta,
and Ruslan Salakhutdinov. Object goal navigation using
goal-oriented semantic exploration. In NeurIPS, 2020. 1,
2

[9] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,
Abhinav Gupta, and Ruslan Salakhutdinov. Learning to ex-
plore using active neural slam. In ICLR, 2020. 2

[10] Heming Du, Xin Yu, and Liang Zheng. Learning object re-
lation graph and tentative policy for visual navigation. In
ECCV, 2020. 2

[11] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie,
Alex X. Lee, and Sergey Levine. Visual foresight: Model-
based deep reinforcement learning for vision-based robotic
control. arXiv, 2018. 2

[12] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey
Levine. Self-supervised visual planning with temporal skip
connections. In CoRL, 2017. 2

[13] Chelsea Finn and Sergey Levine. Deep visual foresight for
planning robot motion. In ICRA, 2017. 2

[14] Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and
Jitendra Malik. Learning predictive visual models of physics
for playing billiards. In ICLR, 2016. 2

[15] Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal
Piot, Bernardo A Pires, and Rémi Munos. Neural predictive
belief representations. In arXiv preprint arXiv:1811.06407,
2018. 7, 8

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 3, 6

[17] Michael Janner, Sergey Levine, William T. Freeman,
Joshua B. Tenenbaum, Chelsea Finn, and Jiajun Wu. Rea-
soning about physical interactions with object-oriented pre-
diction and planning. In ICLR, 2019. 2

[18] Peter Karkus, Mehdi Mirza, Arthur Guez, Andrew Jaegle,
Timothy Lillicrap, Lars Buesing, Nicolas Heess, and Theo-
phane Weber. Beyond tabula-rasa: a modular reinforcement
learning approach for physically embedded 3d sokoban.
ArXiv, 2020. 2

[19] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d
environment for visual ai. In Arxiv, 2017. 2, 5

[20] Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebas-
tian Borgeaud, Malcolm Reynolds, Andrew Zisserman, and
Volodymyr Mnih. Unsupervised learning of object keypoints
for perception and control. In NeurIPS, 2019. 3

[21] Juekun Li, Wee Sun Lee, and David Hsu. Push-net: Deep
planar pushing for objects with unknown physical properties.
In RSS, 2018. 2

[22] Yunzhu Li, Toru Lin, Kexin Yi, Daniel Bear, Daniel L.K.
Yamins, Jiajun Wu, Joshua B. Tenenbaum, and Antonio Tor-
ralba. Visual grounding of learned physical models. In ICLR,
2020. 2

[23] Mehdi Mirza, Andrew Jaegle, Jonathan J Hunt, Arthur Guez,
Saran Tunyasuvunakool, Alistair Muldal, Théophane We-
ber, Peter Karkus, Sébastien Racanière, Lars Buesing, et al.
Physically embedded planning problems: New challenges
for reinforcement learning. ArXiv, 2020. 2

[24] Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad
Rastegari, and Ali Farhadi. Newtonian image understand-
ing: Unfolding the dynamics of objects in static images. In
CVPR, 2016. 2

[25] Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta,
and Ali Farhadi. “what happens if...” learning to predict the
effect of forces in images. In ECCV, 2016. 2

[26] Iman Nematollahi, Oier Mees, Lukas Hermann, and Wol-
fram Burgard. Hindsight for foresight: Unsupervised struc-
tured dynamics models from physical interaction. In IROS,
2020. 2

[27] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy
invariance under reward transformations: Theory and appli-
cation to reward shaping. In ICML, 1999. 6

[28] Fabian Paus, Teng Huang, and Tamim Asfour. Predicting
pushing action effects on spatial object relations by learning
internal prediction models. In ICRA, 2020. 2

[29] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A platform for embodied ai research. In
ICCV, 2019. 1, 2, 6

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv, 2017. 5, 7, 8

[31] Michael Stilman and James Kuffner. Navigation among
movable obstacles: Real-time reasoning in complex environ-
ments. In Humanoids, 2004. 2

[32] Michael Stilman and James Kuffner. Planning among mov-
able obstacles with artificial constraints. IJRR, 2008. 2

[33] Supasorn Suwajanakorn, Noah Snavely, Jonathan J Tomp-
son, and Mohammad Norouzi. Discovery of latent 3d key-
points via end-to-end geometric reasoning. In NeurIPS,
2018. 3

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 4

[35] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia
Schmid, Rahul Sukthankar, and Katerina Fragkiadaki. Sfm-
net: Learning of structure and motion from video. arXiv,
2017. 2

[36] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter
Battaglia, Razvan Pascanu, and Andrea Tacchetti. Visual in-
teraction networks: Learning a physics simulator from video.
In NeurIPS, 2017. 2

[37] Luca Weihs, Jordi Salvador, Klemen Kotar, Unnat Jain, Kuo-
Hao Zeng, Roozbeh Mottaghi, and Aniruddha Kembhavi.
Allenact: A framework for embodied ai research. In arXiv,
2020. 5

[38] Erik Wijmans, Abhishek Kadian, Ari S. Morcos, Stefan Lee,
Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.
Dd-ppo: Learning near-perfect pointgoal navigators from 2.5
billion frames. In ICLR, 2020. 2

[39] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari,
Ali Farhadi, and Roozbeh Mottaghi. Learning to learn how to
learn: Self-adaptive visual navigation using meta-learning.
In CVPR, 2019. 1, 2

[40] Jiajun Wu, Joseph J Lim, Hongyi Zhang, Joshua B Tenen-
baum, and William T Freeman. Physics 101: Learning physi-
cal object properties from unlabeled videos. In BMVC, 2016.
2

[41] Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and
Josh Tenenbaum. Learning to see physics via visual de-
animation. In NeurIPS, 2017. 2

[42] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 6

[43] Fei Xia, Chengshu Li, Roberto Martı́n-Martı́n, Or Litany,
Alexander Toshev, and Silvio Savarese. Relmogen: Leverag-
ing motion generation in reinforcement learning for mobile
manipulation. In ICRA, 2021. 2

[44] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Mi-
cael Edmond Tchapmi, Alexander Toshev, Roberto Martı́n-
Martı́n, and Silvio Savarese. Interactive gibson benchmark:
A benchmark for interactive navigation in cluttered environ-
ments. In ICRA, 2020. 2, 3

[45] Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B. Tenenbaum,
and Shuran Song. Densephysnet: Learning dense physical
object representations via multi-step dynamic interactions.
In RSS, 2019. 2

[46] Kuo-Hao Zeng, Roozbeh Mottaghi, Luca Weihs, and Ali
Farhadi. Visual reaction: Learning to play catch with your
drone. In CVPR, 2020. 2

[47] Kuo-Hao Zeng, William B Shen, De-An Huang, Min Sun,
and Juan Carlos Niebles. Visual forecasting by imitating dy-
namics in natural sequences. In ICCV, 2017. 2

[48] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforcement
learning. In ICRA, 2017. 1

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

A. Heuristic corner detector

Fig. 9 (a) shows our heuristic keypoints detector
pipeline. More specifically, we first use an object segmen-
tation model to obtain the segmentation M corresponding
to object o = GarbageCan. Then, we apply a heuristic
corner detector to detect 8 corner points. Note that we use
the ground truth segmentation of each object in the train-
ing stage, while in the testing stage, we utilize a pretrained
MaskRCNN (Sec. C) to obtain the object segmentation.
Further we present the details of our heuristic corner de-
tector in Fig. 9 (b), where the 8 corner points are obtained
by 8 different criteria and each of the points has to be inside
the segmentation M :

p1 = max
x, px,y∈M

px,y

p2 = max
y, px,y∈M

px,y

p3 = min
x, px,y∈M

px,y

p4 = min
y, px,y∈M

px,y

p5 = max
x+y, px,y∈M

px,y

p6 = min
x+y, px,y∈M

px,y

p7 = max
x−y, px,y∈M

px,y

p8 = min
x−y, px,y∈M

px,y,

where (x, y) is an image coordinate, and M denotes the
object segmentation. Based on this heuristic corner detec-
tor, we are able to get reliable keypoints from object seg-
mentation. More keypoint examples obtained by our heuris-
tic keypoints detector are shown in Fig. 8.

Figure 8: Keypoints examples. Examples keypoints ob-
tained by our keypoint detector.

(a) Heuristic keypoints detector pipeline

Seg(image)
Heuristic
Corner

Detector

image object segmentation keypoints

2

13

4

5

6

8

7

1 p1 = max
x, px,y∈M

px,y

2 p2 = max
y, px,y∈M

px,y

3 p3 = min
x, px,y∈M

px,y

4 p4 = min
y, px,y∈M

px,y

5 p5 = max
x+y, px,y∈M

px,y

6 p6 = min
x+y, px,y∈M

px,y

7 p7 = max
x−y, px,y∈M

px,y

8 p8 = min
x−y, px,y∈M

px,y

(b) Heuristic corner detector

(M)

Figure 9: Keypoint detector details. (a) Heuristic keypoint
detector pipeline. (b) Heurisitc corner detector.

B. Complete list of objects
We use 20 objects for the experiments: alarm clock, ap-

ple, armchair, box, bread, chair, desk, dining table, dog
bed, garbage can, laptop, lettuce, microwave, pillow, pot,
side table, sofa, stool, television and tomato.

C. MaskRCNN results
We evaluate our pretrained MaskRCNN (ResNet-50 with

FPN) on our testing scenes with ≈ 2k images. The check-
point at the 10th epoch achieves 47.4AP and 64.3AP50.
Fig. 12 shows qualitative results on 20 used objects in one
of the testing scenes LivingRoom227.

D. Details of the model architecture
Fig.11 and Fig. 10 summarize the details of the archi-

tecture for visual encoder, goal embedding, policy network,
and NIE model.

Task Goal
Representation

Neural Interaction
Engine

Policy
Network

g

v

ra
a

Visual Encoder

Embedding

fi

224x224x3 → CNN-512
224x224x1 → CNN-512 → 1024 → Linear-512

1160 → GRU-512 (hidden: 512)

512 → Linear-1 512 → Linear-10
(Critic) (Actor)

2 (coordinate of target position or target place)
1 → Embedding-8 (*ObjPlace only)

(See NIP details’ figure)

Figure 10: Detailed architecture of the visual encoder,
goal embedding, and policy network.

1 → Embedding-64

Mask R-CNN
(ResNet50 w/ FPN)

704 → Linear-64 → Tanh
 → Linear-64 → Tanh
 → Linear-16

3 → Linear-32 → Tanh
 → Linear-64

192 → Linear-64 → Tanh
 → Linear-1 → Softmax
 → WeightedSum

256 → Linear-192 → Tanh
 → Linear-128 → Tanh
 → Linear-64

o

M
LP

m pa

M
LP

Average

M
LP

p
c

ca

C
oncatenate

r S
elf-A

ttention

s

sa

a

C
oncatenate

ra

i

Average

Affine Transformation

R
epeat

S
egm

enter
E

ncode
E

ncode

Encode Attention

R
epeat

v

M
LP

share weights

M
LP

Avg. P
ooling

24 → Linear-32 → Tanh
 → Linear-64

Figure 11: Detailed architecture of the NIE model.

E. Action-conditioned keypoints pa results
We evaluate our action-conditioned keypoints pa predic-

tion on the testing set. Our model achieves 0.148 and 0.114
L1 loss estimation over 8 keypoints on the ObsNav and Ob-
jPlace, respectively. We found the model performs worse
in the ObsNav because there are more objects (e.g., obsta-
cles) in this task. Fig. 13 shows the qualitative results of our
action-conditioned keypoint prediction.

Alarm Clock Apple Arm Chair Box

Bread Chair Desk Dining Table

Dog Bed Garbage Can

Laptop Lettuce Microwave Pillow

Pot Side Table

Sofa Stool Television Tomato

Figure 12: MaskRCNN’s qualitative results on 20 used objects. We randomly spawn 20 objects in the testing scene
LivingRoom227 and apply the pretrained MaskRCNN to obtain the segmentation results. The object prediction score is
set to 0.5 and the segmentation probability is set to 0.1.

Push Pull Right Push Left Push
Al

ar
m

 C
lo

ck
La

pt
op

St
oo

l
G

ar
ba

ge
 C

an
Pi

llo
w

Figure 13: Qualitative results of action-conditioned keypoints pa prediction. We show our action-conditioned key-
points pa prediction results over 4 actions on 5 objects in 4 different testing scene (from top to bottom: Kitchen27,
Bathroom430, Bedroom328, and LivingRoom227). The predicted keypoints are shown in red color.

