Learning About Objects by
Learning to Interact with Them
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Embodied self supervised learning

How can embodied agents learn about objects in

. . . . o ” ( —
their environment without any supervision? Observation I—:» F

e Use environment interaction
e Changes to environment = rich learning signal

e Challenges: Noise and sparsity in learning targets

» We discover objects and learn about their properties by interacting with them



The task

e Input: Single RGB+D observation from
random agent pose in Al2-THOR Obsevtion Interactoncore Mass predtion
household scene

e Output:

. Instance segmentation masks

. Pixel-wise probability of successful interaction

. Pixel-wise relative mass estimate
(light/medium/heavy)

e Feedback: RGB observation after
interaction by agent. No labels!

e Embodiment: Apply chosen force
magnitude to pixel (light/medium/strong)



Our approach

1. Self-supervision module: execute
model’'s sampled actions, extract
noisy learning targets from
before/after RGB images

2. Clustering-based segmentation
model: learning targets suitable for
instance segmentation via clustering
from learned pixel embeddings,
using specialized loss functions

3. Memory bank: for efficient offline
learning
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Challenges

sparse
Self-supervised training from scratch

® Interactive object discovery and learning of properties must
happen simultaneously

® Sparsity of interactable objects

® Noisy self-supervised learning targets

® Rich variety of scenes

® Strong generalization requirement (new object/scene types)




e Our model generalizes to new
scenes and objects types

e Our design choices outperform
baselines

e Different supervision scenarios
and ablations illustrate
challenges of the task
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