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Embodied self supervised learning

How can embodied agents learn about objects in 

their environment without any supervision?

● Use environment interaction

● Changes to environment = rich learning signal

● Challenges: Noise and sparsity in learning targets

Ø We discover objects and learn about their properties by interacting with them



The task

l Input: Single RGB+D observation from 
random agent pose in AI2-THOR 
household scene

l Output:
l Instance segmentation masks
l Pixel-wise probability of successful interaction
l Pixel-wise relative mass estimate 

(light/medium/heavy)

l Feedback: RGB observation after 
interaction by agent. No labels!
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Figure 3: Qualitative results. Instance segmentation and mass prediction results are illustrated. The
brighter green corresponds to higher interaction score. The masses are shown in red (light), green
(medium) and blue (heavy). The selected interaction points are shown with colored dots.

Mean per Class Acc. APIOU=0.5 (Mass & BBox)

Ours (self-supervised) 50.79 / 55.86 11.85 / 11.01
Mask-RCNN (full supervision) 78.28 / 86.11 26.90 / 46.24

Table 2: Mass estimation. Results are for NovelObjects / NovelSpaces scenarios.

attention of learning on “easier” objects (such as ones that move more consistently and noise-free297

when interacted with), which provides a natural pace for the learning progress of the model.298

As a reference, (h) reports the performance of a ResNet-18 based Mask-RCNN [26] with RGB+D299

input trained with standard, full supervision. We use all standard settings such as optimizers, learning300

rate schedules, etc. Since the ResNet-18 has about 7 times more parameters than our backbone,301

this precludes a direct comparison to (f), but provides a useful point of reference. (i) reports the302

performance of this model trained with noisy masks obtained from “oracle” interaction. The massive303

drop from (h) to (i) once again indicates the difficulty of learning from noisy masks.304

Other types of self supervision. We also provide the result of [12] which extracts segmentation305

masks using a principal component analysis of the observation sequence as a result of the agent’s306

interaction (row (g)). This method was not effective in discovering objects. We also used an307

unsupervised optical flow method [39] to compute supervision masks, which did not work well either.308

These results highlight the difficulty of signal extraction from raw visual feedback.309

Ablations. We first ablate the effect of the visual prior built into our self-supervision module - using310

super-pixels as a post-processing step to obtain supervision masks (row (j)), resulting in a large311

drop. Next, we ablate the effect of our memory bank sampling procedure (row (k)), which also312

shows a large drop, validating our design choices. Row (l) shows the effect of increasing the agent’s313

interaction radius; increasing the number of objects used for evaluation, and rendering the task harder.314

Qualitative results. Figure 3 shows some qualitative results of our self-supervised approach used315

to estimate object extents (instance segmentation) and masses. Our model can recognize multiple316

objects even in cluttered scenes, and for many object types produces relatively accurate masks. The317

method has difficulty detecting tiny objects such as pencils or forks (which need high precision for318

successful interaction) and large objects such as sofas or drawers (which move only slightly during319

interaction, and whose movement is usually detected only at the boundary of the object). Predicting320

masses from visual cues is expectedly a hard problem as seen by our quantitative and qualitative321

results, but our model does reasonably well to distinguish ‘light’ and ‘medium’ from ‘heavy’ objects.322

6 Conclusion323

An important component in visual learning and reasoning is the ability to learn from interaction with324

the world. This is in contrast to the most popular approaches to the computational models of vision325

that rely on highly curated datasets with extensive annotations. In this paper, we present an agent that326

learns to locate objects and predict their geometric extents and relative masses merely by interacting327

with its environment. Our experiments show that, in fact, our model obtains promising results in328

estimating these object attributes without any external annotation even for object categories that are329

novel and not observed before. Our future work involves inferring more complex object attributes330

such as different states of objects, friction forces and material properties.331
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l Embodiment: Apply chosen force 
magnitude to pixel (light/medium/strong)



Our approach

1. Self-supervision module: execute 
model’s sampled actions, extract 
noisy learning targets from  
before/after RGB images

2. Clustering-based segmentation 
model: learning targets suitable for 
instance segmentation via clustering 
from learned pixel embeddings, 
using specialized loss functions

3. Memory bank: for efficient offline 
learning
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Figure 2: Model overview. Our model is a convolutional neural network that receives an RGB+D
input and outputs instance masks and relative mass estimates. The grey box shows the portion of the
network used during inference. The outputs of each network component are shown in orange. We
compute three types of losses: Interaction loss, Force loss and Embedding loss. Note that both the
predictions and, via interaction, the ground truth are generated by the network.

sequential nature (so that scene changes accumulate over time) prevent the agent from obtaining128

dense supervision. (2) Noisy supervision: In our setting, supervision must be computed from the129

observations before and after interaction and cannot utilize a trained surrogate model and thus130

tends to be very noisy. In addition, some of the supervision is inherently ambiguous. For instance,131

small movements can only help segment an object partially. (3) Class imbalance: In a typical132

household scene, objects that can be moved by a force occupy a tiny fraction of the total room133

volume. This causes a high imbalance between object and non-object pixels, which complicates134

learning. (4) Efficiency: While significantly cheaper than using a physical robot, interacting with a135

virtual environment is time consuming, compared to methods dealing with static images. Our agent136

is assigned a fixed budget of interactions and must learn to use this wisely.137

4 Model138

Our model design is a convolutional neural network inspired by past works in clustering based139

instance segmentation [42, 16]. As shown in Figure 2, it inputs a single 300⇥ 300 RGB+D image140

and passes it through a UNet style backbone [50], which also consumes absolute pixel coordinates141

similar to [37]. The network produces three output tensors (shown in orange in the top portion of142

Figure 2), each with a 100⇥ 100 spatial extent: (1) An interaction score per location - This signifies143

the confidence of the model that an interaction with this pixel will result in a change in its observation.144

(2) Force logits per pixel - These indicate the minimum force magnitude the model predicts will be145

necessary to achieve such a change. In practice, we quantize force magnitudes into 3 bins, resulting146

in 3 logits per location. (3) Spatial embeddings - These are computed for each spatial location147

and capture the appearance of that location. The embeddings are used in a clustering algorithm to148

compute object instance segmentation masks, which encourages locations within a single object to149

have similar embeddings, and locations across objects to have different embeddings. Each output150

is trained with its own loss function. These tensors are used to select actions during training and151

estimate object attributes at inference.152

The network has a field of view large enough to include several objects but small enough to ensure153

sufficient resolution for small objects within a 300⇥ 300 image. Our network has relatively small154

number of parameters (1.4M), which helps stabilize training. See the supplement for more details.155
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Challenges

Self-supervised training from scratch

• Interactive object discovery and learning of properties must 

happen simultaneously

• Sparsity of interactable objects

• Noisy self-supervised learning targets

• Rich variety of scenes

• Strong generalization requirement (new object/scene types)

rich sparse noisy



Results

l Our model generalizes to new
scenes and objects types

l Our design choices outperform
baselines

l Different supervision scenarios 
and ablations illustrate
challenges of the task
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