Learning effective representations of visual data that generalize to a variety of downstream tasks has been a long quest for computer vision. Most representation learning approaches rely solely on visual data such as images or videos. In this paper, we explore a novel approach, where we use human interaction and attention cues to investigate whether we can learn better representations compared to visual-only representations. For this study, we collect a dataset of human interactions capturing body part movements and gaze in their daily lives. Our experiments show that our self-supervised representation that encodes interaction and attention cues outperforms a visual-only state-of-the-art method MoCo, on a variety of target tasks:

  1. Scene classification (semantic)
  2. Action recognition (temporal)
  3. Depth estimation (geometric)
  4. Dynamics prediction (physics)
  5. Walkable surface estimation (affordance)

We introduce a new dataset of human interactions for our representation learning framework. We record egocentric videos from a GoPro camera attached to the subjects' forehead. We simultaneously capture body movements, as well as the gaze. We use Tobii Pro2 eye-tracking to track the center of the gaze in the camera frame. We record the body part movements using BNO055 Inertial Measurement Units (IMUs) in 10 different locations (torso, neck, 2 triceps, 2 forearms, 2 thighs, and 2 legs).


What Can You Learn from Your Muscles? Learning Visual Representation from Human Interactions

Kiana Ehsani, Daniel Gordon, Thomas Nguyen, Roozbeh Mottaghi, and Ali Farhadi ICLR  2021